
 1

 2

SAMS Teach Yourself PHP4 in 24 Hours
Matt Zandstra

A Division of Macmillan USA

201 West 103rd St., , Indianapolis, Indiana, 46290 . USA

Copyright © 2000 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or

transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,

without written permission from the publisher. No patent liability is assumed with respect to the

use of the information contained herein. Although every precaution has been taken in the

preparation of this book, the publisher and author assume no responsibility for errors or

omissions. Nor is any liability assumed for damages resulting from the use of the information

contained herein.

International Standard Book Number: 0-672-31804-0

Library of Congress Catalog Card Number: 99-65599

Printed in the United States of America

First Printing: June 2000

03 02 01 00 4 3 2 1

All terms mentioned in this book that are known to be trademarks or service marks have been

appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.

Use of a term in this book should not be regarded as affecting the validity of any trademark or

service mark.

This publication was produced using the Advent 3B2 Publishing System.

Every effort has been made to make this book as complete and as accurate as possible, but

no warranty or fitness is implied. The information provided is on an "as is" basis. The author

and the publisher shall have neither liability nor responsibility to any person or entity with

respect to any loss or damages arising from the information contained in this book or from the

use of the programs accompanying it.

Dedication

For my father: Who would have approved.

About the Author

Matt Zandstra (<matt@corrosive.co.uk>) runs Corrosive Web Design

(http://www.corrosive.co.uk) with his business partner Max Guglielmino. A compulsive scripter,

he has developed software in PHP, Java, JavaScript, Perl, Lingo, and AppleScript. Matt

 3

originally graduated in philosophy and has learned his trade by reinventing wheels and then

working out why they don't run straight. Matt has taught courses in HTML, JavaScript, Perl,

and PHP and was a contributing author to Dynamic HTML Unleashed. When not coding, Matt

is a committed urban cyclist, a Guinness drinker, an obsessive reader, and a writer of

unpublishable short stories. One day he claims he will write a novel.

 4

Acknowledgments
The open source concept made both my career and this book possible. I would like to thank all

those people whose voluntary efforts continue to defy the received wisdom.

Particular thanks to the PHP community, especially contributors to the PHP mailing lists whose

postings revealed pitfalls, suggested techniques, and kept me amused.

From Macmillan, I would like to thank Randi Roger for suggesting me for this project as well as

Jeff Schultz, Paul Schneider, and Scott Meyers for support and tolerance as deadlines loomed

and panic set in.

Thanks must also go to all at Corrosive for putting up with my continued absence and my

extreme vagueness on any matter not pertaining to PHP. In particular, my business partner

Massimo Guglielmino, who kept the Corrosive show on the road under the usual stressful

circumstances, and Dave Urmson, who took over formatting when the going got tough. Other

Corrosive stars include Anisa Swaffield, Jeff Coburn, Mai Chokelumlerd, and Moira Govern.

I must also thank Small Planet (http://www.smallpla.net) for providing me with additional

development space and allowing me to use it to play with beta software. Particular thanks to

Mohammed Abba and Clive Hills, who recompiled PHP on the Small Planet system more

times than we care to remember.

One of the best ways to test a tutorial text is to use it in class. Thanks to my PHP students who

graciously agreed to act as guinea pigs.

Thanks also to my partner Louise and our new daughter Holly for being there, and bearing the

grumpy, hunched, and obsessed character I became while writing this book.

As my social life took second place to PHP, my local became a refuge for last minute pint and

proofing sessions. Thanks to Alan and Dora of the Prince Arthur for running the perfect pub.

Finally, thanks to the fishes, who cheered up a lurker.

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your

opinion and want to know what we're doing right, what we could do better, what areas you'd

like to see us publish in, and any other words of wisdom you're willing to pass our way.

You can fax, email, or write me directly to let me know what you did or didn't like about this

book— as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name

and phone or fax number. I will carefully review your comments and share them with the

author and editors who worked on the book.

Fax: 317-581-4770

 5

Email: <webdev_sams@mcp.com>

Mail: Mark Taber

Associate Publisher

Sams Publishing

201 West 103rd Street

Indianapolis, IN 46290 USA

 6

Introduction

This is a book about PHP, the open source Web scripting language that has joined Perl, ASP,

and Java on the select list of languages that can be used to create dynamic online

environments. It is also a book about programming. In the space available, it is neither

possible to create a complete guide to programming in PHP nor to cover every function and

technique that PHP offers. Nevertheless, whether you are an experienced programmer

considering a move to PHP or a newcomer to scripting, the steps in this book should provide

enough information to get your journey off to a good start.

Who Should Read This Book?

This book will take you from the first principles through to a good working knowledge of the

PHP4 programming language. No prior experience of programming is assumed, though if you

have worked with a language such as C or Perl in the past, you will find the going much easier.

PHP4 is a Web programming language. To get the most from this book, you should have some

understanding of the World Wide Web and of HTML in particular. If you are just starting out,

you will still be able to use this book, though you should consider acquiring an HTML tutorial. If

you are comfortable creating basic documents and can build a basic HTML table, you will be

fine.

PHP4 is designed to integrate well with databases. Some of the examples in this book are

written to work with MySQL, a SQL database that is free for personal use on some platforms.

We include a short introduction to SQL, but if you intend to use PHP to work with databases,

you might want to spend some time reading up on the subject. Numerous introductory SQL

tutorials are available online. If you intend to work with a database other than MySQL, many of

the examples in this book will be relatively easy to reproduce with the equivalent PHP

functions designed to query your database.

How This Book Is Organized

This book is divided into four parts:

Part 1 is an introduction to PHP4.

Part 2 covers the basic features of the language. Pay particular attention to this section if

you are new to programming.

 7

Part 3 covers PHP4 in more detail, looking at the functions and techniques you will need to

become a proficient PHP programmer.

Part 4 illustrates a complete self-contained example.

Part 1 contains Hours 1 through 3 and handles the information you will need to get your first

script up and running:

Hour 1, "PHP: From Home Page to Portal," describes the history and capabilities of PHP

and looks at some of the compelling reasons for deciding to learn this scripting language.

Hour 2, "Installing PHP," explains how to install PHP on a UNIX system and discusses

some of the configuration options you might want to choose when compiling PHP. In this

hour, we also look at PHP configuration options.

Hour 3, "A First Script," looks at the different ways in which you can embed a PHP script in

a document and create a script that writes text to the user's browser.

Part 2 comprises Hours 4 through 8. In this part, you will learn the basic components of the

PHP language:

Hour 4, "The Building Blocks," covers the basics of PHP. You will learn about variables,

data types, operators, and expressions.

Hour 5, "Going with the Flow," covers the syntax for controlling program flow in your scripts.

In addition to if and switch constructs, you will learn about loops using for and while

statements.

Hour 6, "Functions," explores the use of functions to organize your code.

Hour 7, "Arrays," discusses the array data type that can be used to hold list information.

We will also look at some of the functions that PHP4 provides to manipulate arrays.

Hour 8, "Objects," introduces PHP4's support for classes and objects. Throughout the

course of the hour, we will develop a working example.

Part 3 consists of Hours 9 through 22. In this part, you will come to grips with the features and

techniques of the language:

Hour 9, "Working with Forms," introduces the dimension of user input through the

mechanism of the HTML form. You will learn how to gather data submitted via a form.

Hour 10, "Working with Files," shows you how to work with files and directories on the local

machine.

Hour 11, "Working with the DBM Functions," demonstrates PHP4's support for DBM

database systems, versions of which are available on most systems.

Hour 12, "Database Integration— MySQL," provides a brief introduction to SQL syntax and

introduces the PHP4 functions that can be used to work with the MySQL database.

Hour 13, "Beyond the Box," covers some of the details of HTTP requests and looks at PHP

network functions.

 8

Hour 14, "Working with Dynamic Images" explores PHP's image functions. With these, you

can create GIF or PNG files dynamically.

Hour 15, "Working with Dates," covers the functions and techniques you can use for date

arithmetic. We create a calendar example.

Hour 16, "Working with Data," revisits data types and explores some more of the functions

you can use to work with data in your scripts. More array functions are also covered.

Hour 17, "Working with Strings," covers the functions that you can use to manipulate

strings.

Hour 18, "Working with Regular Expressions," introduces regular expression functions.

You can use these to find and replace complex patterns in strings.

Hour 19, "Saving State with Cookies and Query Strings," shows you some techniques for

passing information across scripts and requests.

Hour 20, "Saving State with Session Functions," extends the techniques explored in Hour

19, using PHP4's built-in session functions.

Hour 21, "Working with the Server Environment," shows you how to call external programs

from your scripts and incorporate their output into your own.

Hour 22, "Debugging," shows you some techniques that you can use to track down

problems in your code. We also examine some common errors.

Part 4 consists of Hours 23 and 24. In these, we build a working example that incorporates

some of the techniques that were introduced earlier in the book.

Hour 23, "An Example (Part 1)," creates a brief for a club listings script. We build the code

that will allow users to create accounts and enter listings.

Hour 24, "An Example (Part 2)," concludes the project, building the code for nonmembers

to browse the listings and look at club profiles.

 9

SAMS Teach Yourself PHP4 in 24 Hours 2
Acknowledgments 4
Tell Us What You Think! 4
Introduction 6
Who Should Read This Book? 6
How This Book Is Organized 6

Hour 1: PHP: From Home Page to Portal 22
Overview 22
What Is PHP? 22
How Did PHP Evolve? 23
What's New in PHP4 24
The Zend Engine 24
Why Choose PHP? 25

Speed of Development 25
PHP Is Open Source 26
Performance 26
Portability 26

Summary 27
Q&A 27
Workshop 27

Quiz 27
Activity 28

Hour 2: Installing PHP 29
Overview 29
Platforms, Servers, Databases, and PHP 29
Where to Find PHP and More 30
Installing PHP4 for Linux and Apache 30
Some configure Options 32

--enable-track-vars 32
--with-gd 32
--with-mysql 33

Configuring Apache 33
php.ini 34

short_open_tag 35
Error Reporting Directives 35

 10

Variable Directives 36
Help! 36
Summary 38
Q&A 38
Workshop 38

Quiz 38
Activity 39

Hour 3: A First Script 40
Overview 40
Our First Script 40

Beginning and Ending a Block of PHP Statements 42
The print() Function 44

Combining HTML and PHP 44
Adding Comments to PHP Code 46
Summary 47
Q&A 47
Workshop 47

Quiz 48
Activity 48

Hour 4: The Building Blocks 49
Overview 49
Variables 49
Dynamic Variables 50
References to Variables 52
Data Types 53

Changing Type with settype() 55
Changing Type by Casting 57

Operators and Expressions 58
The Assignment Operator 59
Arithmetic Operators 59
The Concatenation Operator 60
More Assignment Operators 60
Comparison Operators 61
Creating More Complex Test Expressions with the Logical
Operators 62
Automatically Incrementing and Decrementing an Integer
Variable 63
Operator Precedence 65

 11

Constants 66
Predefined Constants 67

Summary 67
Q&A 67
Workshop 68

Quiz 68
Activities 69

Hour 5: Going with the Flow 70
Overview 70
Switching Flow 70

The if Statement 70
Using the else Clause with the if Statement 72
Using the elseif Clause with the if Statement 73
The switch Statement 75
Using the ? Operator 77

Loops 78
The while Statement 78
The do..while Statement 79
The for Statement 80
Breaking Out of Loops with the break Statement 82
Skipping an Iteration with the continue Statement 84
Nesting Loops 85

Summary 86
Q&A 86

Hour 6: Functions 88
Overview 88
What Is a Function? 88
Calling Functions 88
Defining a Function 90
Returning Values from User-Defined Functions 92
Dynamic Function Calls 93
Variable Scope 94

Accessing Variables with the global Statement 95
Saving State Between Function Calls with the static Statement
 98
More About Arguments 100

Setting Default Values for Arguments 100
Passing References to Variables to Functions 102

 12

Summary 105
Q&A 105
Workshop 105

Quiz 106
Activity 107

Hour 7: Arrays 108
Overview 108
What Is an Array? 108
Creating Arrays 109

Defining Arrays with the array() Function 109
Defining or Adding to Arrays with the Array Identifier 110

Associative Arrays 110
Defining Associative Arrays with the array() Function 111
Directly Defining or Adding to an Associative Array 111

Multidimensional Arrays 112
Accessing Arrays 113

Getting the Size of an Array 113
Looping Through an Array 114
Looping Through an Associative Array 115
Outputting a Multidimensional Array 116

Manipulating Arrays 118
Joining Two Arrays with array_merge() 119
Adding Multiple Variables to an Array with array_push()
 119
Removing the First Element of an Array with array_shift()
 120
Slicing Arrays with array_slice() 121

Sorting Arrays 122
Sorting Numerically Indexed Arrays with sort() 122
Sorting an Associative Array by Value with asort() 123
Sorting an Associative Array by Key with ksort() 123

Summary 124
Q&A 124
Workshop 125

Quiz 125
Activities 125

Hour 8: Objects126
Overview 126

 13

What Is an Object? 126
Creating an Object 127
Object Properties 128
Object Methods 129
An Example 132

Defining the Class's Properties 133
Creating a Constructor 133
The addRow() Method 134
The addRowAssocArray() Method 134
The output() Method 135
Bringing It All Together 136
What's Missing? 139
Why a Class? 139

Inheritance 140
Overriding the Method of a Parent Class 141
Calling an Overridden Method 143

Inheritance: An Example 144
Defining HTMLTable's Properties 144
Creating the Constructor 145
The setCellpadding() Method 146
The Output() Method 146
The Table and HTMLTable Classes in Their Entirety 147
Why Use Inheritance? 150

Summary 151
Q&A 152
Workshop 152

Quiz 152
Activities 153

Hour 9: Working with Forms 154
Overview 154
Global and Environment Variables 154
A Script to Acquire User Input 156
Accessing Input from Multiple SELECT Elements 157
Accessing All the Fields from a Form in an Associative Array
 159
Distinguishing Between GET and POST Transactions 161
Combining HTML and PHP Code on a Single Page 162
Using Hidden Fields to Save State 165

 14

Redirecting the User 167
File Upload Forms and Scripts 169
Summary 173
Q&A 173
Workshop 173

Quiz 174
Activities 174

Hour 10: Working with Files 175
Overview 175
Including Files with include() 175
Testing Files 178

Checking for Existence with file_exists() 179
A File or a Directory? 179
Checking the Status of a File 179
Determining File Size with filesize() 180
Getting Date Information About a File 180
Creating a Function That Performs Multiple File Tests 181

Creating and Deleting Files 183
Opening a File for Writing, Reading, or Appending 183
Reading from Files 184

Reading Lines from a File with fgets() and feof() 185
Reading Arbitrary Amounts of Data from a File with fread()
 186
Reading Characters from a File with fgetc() 188

Writing or Appending to a File 189
Writing to a File with fwrite() or fputs() 189
Locking Files with flock() 190

Working with Directories 191
Creating Directories with mkdir() 191
Removing a Directory with rmdir() 192
Opening a Directory for Reading with opendir() 192
Reading the Contents of a Directory with readdir() 192

Summary 194
Q&A 194
Workshop 194

Quiz 194
Activities 195

Hour 11: Working with the DBM Functions 196

 15

Overview 196
Opening a DBM Database 196
Adding Data to the Database 197
Amending Elements in a Database 198
Reading from a DBM Database 199
Determining Whether an Item Exists in a Database 201
Deleting an Item from a Database 201
Adding Complex Data Structures to a DBM Database 201
An Example 205
Summary 211
Q&A 211
Workshop 211

Quiz 211
Activities 212

Hour 12: Database Integration— MySQL 213
Overview 213
A (Very) Brief Introduction to SQL 213
Connecting to the Database Server 214
Selecting a Database 215
Finding Out About Errors 215
Adding Data to a Table 216
Acquiring the Value of an Automatically Incremented Field 220
Accessing Information 221

Finding the Number of Rows Found by a Query 221
Accessing a Resultset 222

Changing Data 225
Getting Information About Databases 227

Listing Databases 227
Listing the Tables Within a Database 229
Listing and Exploring Fields 229

Database Structure— Bringing It All Together 230
Summary 232
Q&A 233
Workshop 233

Quiz 234
Activities 234

Hour 13: Beyond the Box 235
Overview 235

 16

Environmental Variables 235
A Brief Summary of an HTTP Client/Server Negotiation 238

The Request 238
The Response 241

Getting a Document from a Remote Address 243
Converting IP Addresses and Hostnames 244
Making a Network Connection 245

Making an NNTP Connection Using fsockopen() 249
Sending Mail with the mail() Function 252
Summary 253
Q&A 253
Workshop 254

Quiz 254
Activities 254

Hour 14: Working with Dynamic Images 256
Overview 256
Creating and Outputting Images 256
Acquiring Color 257
Drawing Lines 258
Applying Color Fills 259
Drawing an Arc 260
Drawing a Rectangle 261
Drawing a Polygon 262
Making a Color Transparent 263
Working with Text 264

Writing a String with imageTTFtext() 265
Testing Text Dimensions with imageTTFbox() 266

Bringing It Together 270
Summary 275
Q&A 275
Workshop 276
Quiz 276

Activities 276
Hour 15: Working with Dates 277

Overview 277
Getting the Date with time() 277
Converting a Time Stamp with getdate() 278
Converting a Time Stamp with date() 279

 17

Creating Time Stamps with mktime() 282
Testing a Date with checkdate() 283

An Example 283
Checking User Input 284
Building the HTML Form 285
Creating the Calendar Table 287

Summary 292
Q&A 292
Workshop 292

Quiz 292
Activity 293

Hour 16: Working with Data 294
Overview 294
Data Types Revisited 294

A Recap 294
Converting Complex Types 295
Automatic Conversion of Data Types 297
Testing Data Types 298
More Ways of Changing Type 300
Why Are Data Types Important? 300

Testing for Absence and Emptiness 302
More About Arrays 303

An Alternative Approach to Traversing Arrays 304
Checking That a Value Exists in an Array 305
Removing an Element from an Array 306
Applying a Function to Every Element in an Array 306

Custom Sorting Arrays 307
Summary 311
Q&A 311
Workshop 311

Quiz 311
Activities 312

Hour 17: Working with Strings 313
Overview 313
Formatting Strings 313

Working with printf() 313
printf() and Type Specifiers 314
Padding Output with the Padding Specifier 317

 18

Specifying a Field Width 318
Specifying Precision 319
Conversion Specifications: A Recap 320
Storing a Formatted String 322

Investigating Strings 323
A Note About Indexing Strings 323
Finding the Length of a String with strlen() 324
Finding a Substring Within a String with strstr() 324
Finding the Position of a Substring with strpos() 325
Extracting Part of a String with substr() 325
Tokenizing a String with strtok() 326

Manipulating Strings 328
Cleaning Up a String with trim() and ltrim() 328
Replacing a Portion of a String using substr_replace() 329
Replacing Substrings Using str_replace 329
Converting Case 329
Breaking Strings into Arrays with explode() 331

Summary 331
Q&A 332
Workshop 332

Quiz 332
Activities 333

Hour 18: Working with Regular Expressions 334
Overview 334
POSIX Regular Expression Functions 334

Using ereg() to Match Patterns in Strings 335
Using Quantifiers to Match a Character More Than Once
 335
Matching Ranges of Characters with Character Classes 338
Working with Atoms 339
Branches 340
Anchoring a Regular Expression 340
The Membership Code Example Revisited 341
Using egrep_replace() to Replace Patterns in Strings 342
Using Back References with egrep_replace() 342
Using split() to Break Up Strings 343

Perl Compatible Regular Expressions (PCREs) 343
Matching Patterns with preg_match() 343

 19

PCREs and Greediness 344
PCREs and Backslashed Characters 345
Finding Matches Globally with preg_match_all() 347
Using preg_replace() to Replace Patterns 350
Modifiers 351

Summary 354
Q&A 354
Workshop 355

Quiz 355
Activity 355

Hour 19: Saving State with Cookies and Query Strings 356
Overview 356
Cookies 356

The Anatomy of a Cookie 357
Setting a Cookie with PHP 358

Deleting a Cookie 360
Creating Session Cookies 360
An Example— Tracking Site Usage 361

Working with the Query String 369
Creating a Query String 370
Summary 372
Q&A 373
Workshop 373

Quiz 373
Activities 374

Hour 20: Saving State with Session Functions 375
Overview 375
What Are Session Functions? 375
Starting a Session with session_start() 376
Working with Session Variables 377
Destroying Sessions and Unsetting Variables 382
Passing Session IDs in the Query String 383
Encoding and Decoding Session Variables 384
Checking that a Session Variable Is Registered 385
Summary 385
Q&A 386
Workshop 386

Quiz 386

 20

Activities 386
Hour 21: Working with the Server Environment 388

Overview 388
Opening Pipes to and from Processes with popen() 388
Running Commands with exec() 392
Running External Commands with system() or the Backtick
Operator 393
Plugging Security Holes with escapeshellcmd() 394
Running External Applications with passthru() 396
Calling an External CGI Script with the virtual() Function 397
Summary 398
Q&A 398
Workshop 399

Quiz 399
Activities 400

Hour 22: Debugging 401
Overview 401
Getting Information About PHP and Your Script 401

phpinfo() 401
Viewing Source with Syntax Coloring 405
PHP Error Messages 407
Writing Error Messages to a Log File 410

Getting the Error String 412
Manual Debugging 412
Common Errors 414
Summary 416
Q&A 417
Workshop 417

Quiz 417
Activity 417

Hour 23: An Example (Part 1) 418
Overview 418
The Brief 418
The Structure 418
Designing the Database 419
Design Choices 421
The Members Environment 421

join.php and dblib.inc 421

 21

updateclub.php 429
membersmenu.php 437
login.php 438
updateevent.php 441
reviewevents.php 450

Summary 455
Q&A 455
Workshop 456

Quiz 456
Activity 456

Hour 24: An Example (Part 2) 457
Overview 457
The Events Diary Public Screens 457

viewevents.php 457
viewclubs.php 466
viewclub.php 470
viewevent.php 473

The Future 476
Summary 477
Q&A 477
Workshop 477

Quiz 477
Activities 478

 22

Hour 1: PHP: From Home Page to Portal

Overview

Welcome to PHP! Throughout this book you will look at almost every element of the

PHP language. But first you will explore PHP as a product— its history, features, and

future.

In this hour, you will learn

What PHP is

About PHP's history

What improvements can be found in PHP4

Some options that add features to your PHP binary

Some reasons you should choose to work with PHP

What Is PHP?

PHP is a language that has outgrown its name. It was originally conceived as a set

of macros to help coders maintain personal home pages, and its name grew from its

purpose. Since then, PHP's capabilities have been extended, taking it beyond a set

of utilities to a full-featured programming language, capable of managing huge

database-driven online environments.

As PHP's capabilities have grown, so too has its popularity. According to NetCraft

(http://www.netcraft.com), PHP was running on more than 1 million hosts in

November 1999. As of February 2000, that figure had already risen to 1.4 million

hosts. According to E-Soft, PHP is the most popular Apache module available,

beating even ModPerl.

PHP is now officially known as PHP: HyperText Preprocessor. It is a server-side

scripting language usually written in an HTML context. Unlike an ordinary HTML

page, a PHP script is not sent directly to a client by the server; instead, it is parsed

by the PHP binary or module. HTML elements in the script are left alone, but PHP

code is interpreted and executed. PHP code in a script can query databases, create

images, read and write files, talk to remote servers— the possibilities are endless.

 23

The output from PHP code is combined with the HTML in the script and the result

sent to the user.

How Did PHP Evolve?

The first version of PHP was created by Rasmus Lerdorf in 1994 as a set of Web

publishing macros. These were released as the Personal Home Page Tools and later

rewritten and extended to include a package called the Form Interpreter (PHP/FI).

From a user's perspective, PHP/FI was already an attractive proposition, and its

popularity grew steadily. It also began to attract interest from the developer

community. By 1997, a team of programmers was working on the project.

The next release— PHP3— was born out of this collaborative effort. PHP3 was an

effective rewrite of PHP, with an entirely new parser created by Zeev Suraski and

Andi Gutmans, as well as differences in syntax and new features. This release

established PHP as one of the most exciting server scripting languages available,

and the growth in usage was enormous.

PHP's support for Apache and MySQL further secured its popularity. Apache is now

the most-used Web server in the world, and PHP3 can be compiled as an Apache

module. MySQL is a powerful free SQL database, and PHP provides a comprehensive

set of functions for working with it. The combination of Apache, MySQL, and PHP is

all but unbeatable.

That isn't to say that PHP is not designed to work in other environments and with

other tools. In fact, PHP supports a bewildering array of databases and servers.

The rise in popularity of PHP has coincided with a change of approach in Web

publishing. In the mid-1990s it was normal to build sites, even relatively large sites,

with hundreds of individual hard-coded HTML pages. Increasingly, though, site

publishers are harnessing the power of databases to manage their content more

effectively and to personalize their sites according to individual user preferences.

The use of databases to store content, and of a scripting language to retrieve this

data, will become further necessary as data is sent from a single source to multiple

environments, including mobile phones and PDAs, digital television, and broadband

Internet environments.

In this context, it is not surprising that a tool of PHP's sophistication and flexibility is

becoming so popular.

 24

At the time of this writing, PHP4 is in its final beta stage and is due for release

shortly. By the time you read this book, PHP4 will be making waves!

What's New in PHP4

PHP4 introduces numerous new features that will make the programmer's life more

interesting. Let's take a quick look at some of them.

A new foreach statement, similar to that found in Perl, makes it much easier to

loop through arrays. We will be using this for most of the array examples in this

book. Additionally, a raft of new array functions have been added, making arrays

easier to manipulate.

The language now includes the boolean data type.

A particularly useful feature of PHP3 was the capability to name form elements

as if they were elements in an array. The elements' names and values are then

made available to the code in array form. This feature has been extended to

support multidimensional arrays.

Support for object-oriented programming was somewhat rudimentary in PHP.

This is significantly extended in PHP4; for example, it is now possible to call an

overridden method from a child class.

PHP4 now provides native support for user sessions, using both cookies and the

query string. You can now "register" a variable with a session, and then access

the same variable name and value in subsequent user requests.

A new comparison operator (===) has been introduced that tests for

equivalence of type as well as equivalence of value.

New associative arrays containing server and environmental variables have

been made available, as well as a variable that holds information about uploaded

files.

PHP4 now provides built-in support for both Java and XML.

Although these and other features significantly improve the language, perhaps the

most significant change has taken place under the hood.

The Zend Engine

When PHP3 was written, an entirely new parser was created from the ground up.

PHP4 represents a similar change to the scripting engine. This rewrite, though, is

more significant by orders of magnitude.

 25

Zend is a scripting engine that sits below the PHP-specific modules. It is optimized

to significantly improve performance.

These changes in efficiency will ensure PHP4's continued success. Most code written

for PHP3 will continue to run with no changes; however, these scripts may run up to

200 times faster!

A commercial addition to the Zend engine will be the facility for compiling PHP

scripts. This will provide a further gain in performance that should leave most, if not

all, competitors far behind.

Zend is built to improve performance but is also designed for increased flexibility.

Communication with servers has been improved, so it will be possible to create PHP

modules that work with a wider range of servers. Unlike a CGI interpreter, which sits

outside a server and is initialized every time a script is run, a server module runs in

conjunction with the server. This improves performance because the scripting

engine does not need to be started for a PHP page to be executed.

Why Choose PHP?

There are some compelling reasons to work with PHP4. For many projects you will

find that the production process is significantly faster than you might expect if you

are used to working with other scripting languages. As an open source product,

PHP4 is well supported by a talented production team and a committed user

community. Furthermore, PHP can be run on all the major operating systems with

most servers.

Speed of Development

Because PHP allows you to separate HTML code from scripted elements, you will

notice a significant decrease in development time on many projects. In many

instances, you will be able to separate the coding stage of a project from the design

and build stages. Not only can this make life easier for you as a programmer, it also

can remove obstacles that stand in the way of effective and flexible design.

 26

PHP Is Open Source

To many people, "open source" simply means free, which is, of course, a benefit in

itself. To quote from the official PHP site at http://www.php.net/:

This may sound a little foreign to all you folks coming from a non-UNIX

background, but PHP doesn't cost anything. You can use it for commercial and/or

non-commercial use all you want. You can give it to your friends, print it out and

hang it on your wall or eat it for lunch. Welcome to the world of Open Source

software! Smile, be happy, the world is good. For the full legalese, see the official

license.

Well-maintained open source projects offer users additional benefits, though. You

benefit from an accessible and committed community who offer a wealth of

experience in the subject. Chances are that any problem you encounter in your

coding can be answered swiftly and easily with a little research. If that fails, a

question sent to a mailing list can yield an intelligent, authoritative response.

You also can be sure that bugs will be addressed as they are found, and that new

features will be made available as the need is defined. You will not have to wait for

the next commercial release before taking advantage of improvements.

There is no vested interest in a particular server product or operating system. You

are free to make choices that suit your needs or those of your clients, secure that

your code will run whatever you decide.

Performance

Because of the powerful Zend engine, PHP4 compares well with ASP in benchmark

tests, beating it in some tests. Compiled PHP leaves ASP far behind.

Portability

PHP is designed to run on many operating systems and to cooperate with many

servers and databases. You can build for a UNIX environment and shift your work to

NT without a problem. You can test a project with Personal Web Server and install it

on a UNIX system running on PHP as an Apache module.

 27

Summary

In this hour, we introduced PHP. You learned the history of PHP from a simple set of

macros to the powerful scripting environment it has become. You found out about

PHP4 and the Zend scripting engine, and how they incorporate new features and

more efficiency. Finally, you discovered some of the features that make PHP a

compelling choice as a Web programming language.

Q&A

Q Is PHP an easy language to learn?

A In short, yes! You really can learn the basics of PHP in 24 hours. PHP provides an

enormous wealth of functions that allow you to do things for which you would have

to write custom code in other languages. PHP also handles data types and memory

issues for you (much like Perl).

Understanding the syntax and structures of a programming language is only the

beginning of the journey, however. Ultimately, you will only really learn by building

your own projects and by making mistakes. You should see this book as a starting

point.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

What did the initials PHP originally stand for?

Who created the original version of PHP?

What is the name of the new scripting engine that powers PHP?

Name a new feature introduced with PHP4.

 28

Activity

Flick through this book to get an idea of its structure. Think about the topics

covered and how they might help you with any future projects.

 29

Hour 2: Installing PHP

Overview

Before getting started with the PHP language, you must first acquire, install, and

configure the PHP interpreter. PHP is available for a wide range of platforms and

works in conjunction with many servers.

In this hour, you will learn

Which platforms, servers, and databases are supported by PHP4

Where to find PHP and other useful open source software

One way of installing PHP on Linux

Some options that add features to your PHP binary

Some configuration directives

How to find help when things go wrong

Platforms, Servers, Databases, and PHP

PHP is truly cross-platform. It runs on the Windows operating system, most versions

of UNIX including Linux, and even the Macintosh. Support is provided for a range of

Web servers including Apache (itself open source and cross-platform), Microsoft

Internet Information Server, WebSite Pro, the iPlanet Web Server, and Microsoft's

Personal Web Server. The latter is useful if you want to test your scripts offline on a

Windows machine, although Apache can also be run on Windows.

You can also compile PHP as a standalone application. You can then call it from the

command line. In this book, we will concentrate on building Web applications, but

do not underestimate the power of PHP4 as a general scripting tool comparable to

Perl.

PHP is designed to integrate easily with databases. This feature is one of the factors

that make the language such a good choice for building sophisticated Web

applications. Many databases are directly supported, including Adabas D, InterBase,

Solid, dBASE, mSQL, Sybase, Empress, MySQL, Velocis, FilePro, Oracle, UNIX dbm,

Informix, and PostgreSQL. PHP also supports ODBC.

 30

Throughout this book, we will be using a combination of Linux, Apache, and MySQL.

All these are free to download and use, and can be installed relatively easily on a PC.

You can find out more about getting Linux for your computer at

<http://www.linux.org/help/beginner/distributions.html>. If you want to run Linux

on a Power PC, you can find information about LinuxPPC at

<http://www.linuxppc.org>.

MySQL, the database we will use in this book, can be downloaded from

<http://www.mysql.com>. There are versions for many operating systems

including UNIX, Windows, and OS/2.

On the other hand, you can easily stick with Windows, NT, or MacOS. PHP is, after

all, a cross-platform scripting language.

Where to Find PHP and More

You can find PHP4 at <http://www.php.net/>. PHP4 is open source software, which

means that you won't need your credit card handy when you download it.

The PHP WebSite is an excellent resource for PHP coders. The entire manual can be

read online at <http://www.php.net/manual/>, complete with helpful annotations

from other PHP coders. You can also download the manual in several formats.

Installing PHP4 for Linux and Apache

In this section, we will look at one way of installing PHP4 with Apache on Linux. The

process is more or less the same for any UNIX operating system. You might be able

to find prebuilt versions of PHP for your system, which are simple to install.

Compiling PHP, though, gives you greater control over the features built in to your

binary.

Before you install you should make sure that you are logged into your system as the

root user. If you are not allowed access to your system's root account, you may

need to ask your system administrator to install PHP for you.

There are two ways of compiling an Apache PHP module. You can either recompile

Apache, statically linking PHP into it, or you can compile PHP as a Dynamic Shared

Object (DSO). If your version of Apache was compiled with DSO support, it will be

capable of supporting new modules without the need for recompiling the server.

 31

This method is the easiest way to get PHP up and running, and it is the one we will

look at in this section.

In order to test that Apache supports DSOs you should launch the Apache binary

(httpd) with the -l argument.

/www/bin/httpd -l

You should see a list of modules. If you see

mod_so.c

among them, you should be able to proceed; otherwise, you may need to recompile

Apache. The Apache distribution contains full instructions for this.

If you have not already done so, you will need to download the latest distribution of

PHP4. Your distribution will be archived as a tar file and compressed with gzip, so

you will need to unpack it:

tar -xvzf php-4.0.tar.gz

After your distribution is unpacked, you should move to the PHP4 distribution

directory:

cd ../php-4.0

Within your distribution directory you will find a script called configure. This accepts

arguments that will control the features that PHP will support. For this example, we

will include some useful command line arguments, although you might want to

specify arguments of your own. We will discuss some of the configure options

available to you later in the hour.

./configure --enable-track-vars \

 --with-gd \

 --with-mysql \

 --with-apxs=/www/bin/apxs

The path you assign to the --with-apxs argument is likely to be different on your

system. It is possible that you will find apxs in the same directory as your Apache

executable.

After the configure script has run, you can run the make program. You will need a C

compiler on your system to run this command successfully.

make

 32

make install

These commands should end the process of PHP4 compilation and installation. You

should now be able to configure and run Apache.

Some configure Options

When we ran the configure script, we included some command-line arguments

that determined the features that the PHP interpreter will include. The configure

script itself gives you a list of available options. From the PHP distribution directory

type the following:

./configure --help

The list produced is long, so you may want to add it to a file for reading at leisure:

./configure --help > configoptions.txt

Although the output from this command is very descriptive, we will look at a few

useful options— especially those that might be needed to follow this book.

--enable-track-vars

This option automatically populates associative arrays with values submitted as part

of GET, POST requests or provided in a cookie. You can read more about arrays in

Hour 7, "Arrays," and about HTTP requests in Hour 13, "Beyond the Box." It is a

good idea to include this option when running configure.

--with-gd

--with-gd enables support for the GD library, which, if installed on your system,

allows you to create dynamic GIF or PNG images from your scripts. You can read

more about creating dynamic images in Hour 14, "Working with Dynamic Images."

You can optionally specify a path to your GD library's install directory:

--with-gd=/path/to/dir

 33

--with-mysql

--with-mysql enables support for the MySQL database. If your system has MySQL

installed in a directory other than the default location, you should specify a path:

--with-mysql=/path/to/dir

As you know, PHP provides support for other databases. Table 2.1 lists some of

them and the configure options you will need to use them.

Table 2.1: Some Database configure Options

Database configure Option

Adabas D --with-adabas

FilePro --with-filepro

msql --with-msql

informix --with-informix

iODBC --with-iodbc

OpenLink

ODBC

--with-openlink

Oracle --with-oracle

PostgreSQL --with-pgsql

Solid --with-solid

Sybase --with-sybase

Sybase-CT --with-sybase-ct

Velocis --with-velocis

LDAP --with-ldap

Configuring Apache

After you have compiled PHP and Apache, you should check Apache's configuration

file, httpd.conf, which you will find in a directory called conf in the Apache install

directory. Add the following lines to this file:

 34

AddType application/x-httpd-php .php

AddType application/x-httpd-php-source .phps

This ensures that the PHP interpreter will parse files that end with the .php

extension. Any files with the .phps extension will be output as PHP source. That is,

the source code will be converted to HTML and color-coded. This can be useful for

debugging your scripts.

If you want to offer to your users PHP pages with extensions more familiar to them,

you can choose any extension you want. You can even ensure that files with

the .html extension are treated as PHP files with the following:

AddType application/x-httpd-php .html

Note that treating files with the .html extension as PHP scripts could slow down your

site, because every page with this extension will be parsed by the PHP interpreter

before it is served to the user.

If PHP has been preinstalled and you have no access to the Apache configuration

files, you may be able to change the extensions that will determine which files will

be treated as PHP executables by including an AddType directive in a file

called .htaccess. After you have created this file, the directive will affect the

enclosing directory, as well as any subdirectories. This technique will only work if

the AllowOverride directive for the enclosing directory is set to either FileInfo or All.

Although the filename .htaccess is the default for an access control file, it may have

been changed. Check the AccessFileName directive in httpd.conf to find out. Even if

you don't have root access, you should be able to read the Apache configuration

files.

An .htaccess file can be an excellent way of customizing your server space if you do

not have access to the root account. An additional way of controlling the behavior of

PHP, even as a non-root user, is the php.ini file.

php.ini

After you have compiled or installed PHP, you can still change its behavior with a file

called php.ini. On UNIX systems, the default location for this file is /usr/local/lib;

on a Windows system, the default location is the Windows directory. A php.ini file

in the current working directory will override one in the default location, so you can

change the behavior of PHP on a per-directory basis.

 35

You should find a sample php.ini file in your distribution directory, which contains

factory settings. Factory settings will be used if no php.ini file is used.

The default settings should be adequate for most of the examples in this book,

although you can read about some amendments you might like to make in Hour 22,

"Debugging."

Directives in the php.ini file take the form of a directive and a value separated by an

equals sign. Whitespace is ignored.

If PHP has been preinstalled on your system, you might want to check some of the

settings in php.ini. Remember, if you are not allowed to alter this document, you

can create one in your script's directory that can override the default. You can also

set an environmental variable PHPRC that designates a php.ini file.

You can change your php.ini settings at any time, though if you are running PHP as

an Apache module, you should restart the server for the changes to take effect.

short_open_tag

The short_open_tag directive determines whether you can begin a block of PHP

code with the symbols <? and close it with ?>. If this has been disabled, you will see

one of the following:

short_open_tag = Off

short_open_tag = False

short_open_tag = No

To enable the directive you can use one of the following:

short_open_tag = On

short_open_tag = True

short_open_tag = Yes

You can read more about PHP open and close tags in Hour 3, "A First Script."

Error Reporting Directives

To diagnose bugs in your code, you should enable the directive that allows error

messages to be written to the browser. This is on by default:

 36

display_errors = On

You can also set the level of error reporting. We will cover the options available for

the error_reporting directive in more depth in Hour 22. For now, however, you

should set this to the following:

error_reporting = E_ALL & ~ E_NOTICE

This will report all errors but not notices that warn about potential problems with

your code. Notices can interfere with some PHP techniques. This setting is the

default.

Variable Directives

PHP makes certain variables available to you as a result of a GET request, a POST

request, or a cookie. You can influence this in the php.ini file.

The track_vars directive creates associative arrays containing elements generated

as a result of an HTTP request. This is allowed by default:

track_vars = On

The register_globals directive determines whether values resulting from an HTTP

request should be made available as global variables. Many scripts in this book will

require the following setting to be enabled:

register_globals = On

Help!

Help is always at hand on the Internet, particularly for problems concerning open

source software. Wait a moment before you hit the send button, however. No

matter how intractable your installation, configuration, or programming problem

might seem, chances are you are not alone. Someone will have already answered

your question.

When you hit a brick wall, your first recourse should be to the official PHP site at

<http://www.php.net/>, particularly the annotated manual at

<http://www.php.net/manual>.

If you still can't find your answer, don't forget that the PHP site is searchable. The

advice you are seeking may be lurking in a press release or a Frequently Asked

 37

Questions file. Another excellent and searchable resource is the PHP Knowledge

Base at <http://www.faqts.com/knowledge-base/index.phtml>.

Still no luck? You can find links to searchable mailing list archives at

<http://www.php.net/mailsearch.php3>. These archives represent a huge

information resource with contributions from many of the great and the good in the

PHP community. Spend some time trying out a few keyword combinations.

If you are still convinced that your problem has not been addressed, you may well

be doing the PHP community a service by exposing it.

You can join the PHP mailing lists at <http://www.php.net/support.php3>.

Although these lists are often high volume, you can learn a lot from them. If you are

serious about PHP scripting, you should certainly subscribe at least to a digest list .

Once subscribed to the list that matches your concerns, you might consider posting

your problem.

When you post a question it is often a good idea to include as much information as

possible (without writing a novel). The following items often are pertinent:

Your operating system

The version of PHP you are running or installing

The configure options you chose

Any output from the configure or make commands that preceded an installation

failure

A reasonably complete example of the code that is causing you problems

Why all these cautions about posting a question to a mailing list? First, developing

research skills will stand you in good stead. A good researcher can generally solve a

problem quickly and efficiently. Asking a naive question of a technical list often

involves a wait rewarded only by a message or two referring you to the archives

where you should have begun your search for answers.

Second, remember that a mailing list is not analogous to a technical support call

center. No one is paid to answer your questions. Despite this, you have access to an

impressive resource of talent and knowledge, including that of some of the creators

of PHP itself. A good question and its answer will be archived to help other coders.

Asking a question that has been answered several times just adds more noise.

Having said this, don't be afraid to post a problem to the list. PHP developers are a

civilized and helpful breed, and by bringing a problem to the attention of the

community, you might be helping others to solve the same problem.

 38

Summary

PHP4 is open source software. It is also open in the sense that it does not demand

that you use a particular server, operating system, or database.

In this hour, you learned where to locate PHP and other open source software that

can help you host and serve Web sites. You learned how to compile PHP as an

Apache module on Linux. If you download a PHP binary for another platform, your

distribution will contain step-by-step instructions. You learned some of the

configure options that can change the features that your binary will support. You

learned about php.ini and some of the directive it contains. Finally, you learned

about sources of support. You should now be ready to come to grips with the

language itself.

Q&A

Q You have covered an installation for Linux and Apache. Does that mean

that this book will not apply to my server and operating system?

A No, one of PHP's great strengths is that it runs on multiple platforms. If you are

having trouble installing PHP to work on your operating system or with your server,

don't forget to read the files that come with your PHP distribution. You should find

comprehensive step-by-step instructions for installation. If you are still having

problems, review the "Help!" section earlier in this hour. The online resources

mentioned there will almost certainly contain the answers you need.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

Where can you find the PHP online manual?

From a UNIX operating system, how would you get help on configuration options

(the options that you pass to the configure script in your PHP distribution)?

 39

What is Apache's configuration file typically called?

What line should you add to the Apache configuration file to ensure that the .php

extension is recognized?

What is PHP's configuration file called?

Activity

Install PHP on your system. If it is already in place, review your php.ini file and

check your configuration.

 40

Hour 3: A First Script

Overview

Having installed and configured PHP, it is now time to put it to the test. In this hour,

you will create your first script and spend a little time analyzing its syntax. By the

end of the hour, you should be ready to create documents that include both HTML

and PHP.

In this hour, you will learn

How to create, upload, and run a PHP script

How to incorporate HTML and PHP in the same document

How to make your code clearer with comments

Our First Script

Let's jump straight in with a PHP script. To begin, open your favorite text editor. Like

HTML documents, PHP files are made up of plain text. You can create them with any

text editor, such as Notepad on Windows, Simple Text and BBEdit on MacOS, or VI

and Emacs on UNIX operating systems. Most popular HTML editors provide at least

some support for PHP.

Type in the example in Listing 3.1 and save the file, calling it something like

first.php.

Listing 3.1: A First PHP Script

1: <?php

2: print "Hello Web!";

3: ?>

Figure 3.1 shows the script created in Listing 3.1 as typed into the BBEdit text editor

for MacOS.

 41

Figure 3.1: Your first script as created in the BBEdit text editor.

The extension to the PHP document is important because it tells the server to treat

the file as PHP code and invoke the interpreter. The default PHP extension for a PHP

4 document is .php. This can be changed, however, by altering the server's

configuration. You saw how to do this in Hour 2, "Installing PHP."

If you are not working directly on the machine that will be serving your PHP script,

you will probably need to use an FTP client, such as WS-FTP for Windows or Fetch for

MacOS to upload your saved document to the server.

After the document is in place, you should be able to access it via your browser. If

all has gone well, you should see the script's output. Figure 3.2 shows the output

from the first.php script.

Figure 3.2: Success: the output from Listing 3.1.

If PHP is not installed on your server or your file's extension is not recognized, you

may not see the output shown in Figure 3.2. In these cases, you probably will see

the source code created in Listing 3.1. Figure 3.3 shows what happens when an

unknown extension is encountered.

 42

Figure 3.3: Failure: the extension is not recognized.

If this happens, first check the extension with which you saved your PHP script. In

Figure 3.3, the document was accidentally called first.nphp. If the file extension is

as it should be, you may need to check that PHP has been installed properly and that

your server is configured to work with the extension that you have used for your

script. You can read more about installing and configuring PHP in Hour 2.

Now that you have uploaded and tested your script, you can take a look at the code

in a little more detail.

Beginning and Ending a Block of PHP Statements

When writing PHP, you need to inform the interpreter that you want it to execute

your commands. If you don't do this, the code you write will be mistaken for HTML

and will be output to the browser. Table 3.1 shows the four ways of enclosing PHP

code.

Table 3.1: PHP Start and End Tags

Tag Style Start Tag End Tag

Standard

tags

<?php ?>

Short tags <? ?>

ASP tags <% %>

Script tags <SCRIPT

LANGUAGE="php"

>

</SCRIPT>

 43

Of the tags in Table 3.1, only the standard and the script tags can be guaranteed to

work on any configuration. The short and ASP style tags must be explicitly enabled

in your php.ini. You examined the php.ini file in Hour 2.

To activate recognition for short tags, you must make sure that the short_open_tag

switch is set to "On" in php.ini:

short_open_tag = On;

Short tags are enabled by default, so you would only need to edit php.ini if you want

to disable these.

To activate recognition for the ASP style tags, you must enable the asp_tags

setting:

asp_tags = On;

After you have edited php.ini, you should be able to choose from any of the four

styles for use in your scripts. This is largely a matter of preference, although if you

intend to work with XML, you should disable the short tags (<? ?>) and work with

the standard tags (<?php ?>).

Let's run through some of the ways in which you can legally write the code in Listing

3.1. You could use any of the four PHP start and end tags that you have seen:

<?

print("Hello Web!");

?>

<?php

print("Hello Web!");

?>

<%

print("Hello Web!");

%>

<SCRIPT LANGUAGE="php">

print("Hello Web!");

</SCRIPT>

Single lines of code in PHP also can be presented on the same line as the PHP start

and end tags:

 44

<? print("Hello Web!"); ?>

Now that you know how to define a block of PHP code, take a closer look at the code

in Listing 3.1 itself.

The print() Function

print() is a function that outputs data. In most cases, anything output by print()

ends up in the browser window. A function is a command that performs an action,

usually modified in some way by data provided for it. Data sent to a function is

almost always placed in parentheses after the function name. In this case, you sent

the print() function a collection of characters, or string. Strings must always be

enclosed by quotation marks, either single or double.

 Note Function calls generally require parentheses after their name whether or

not they demand that data be passed to them. print() is an exception,

and enclosing the data you want to print to the browser in parentheses is

optional. This is the more common syntax, so we will usually omit the

brackets in our examples.

You ended your only line of code in Listing 3.1 with a semicolon. The semicolon

informs the interpreter that you have completed a statement.

 NEW

TERM

A statement represents an instruction to the interpreter. Broadly, it

is to PHP what a sentence is to written or spoken English. A

statement should usually end with a semicolon; a sentence should

end with a period. Exceptions to this include statements that

enclose other statements, and statements that end a block of code.

In most cases, however, failure to end a statement with a semicolon

will confuse the interpreter and result in an error.

Because the statement in Listing 3.1 is the final one in that block of code, the

semicolon is optional.

Combining HTML and PHP
The script in Listing 3.1 is pure PHP. You can incorporate this into an HTML

document simply by adding HTML outside the PHP start and end tags, as shown in

Listing 3.2.

Listing 3.2: A PHP Script Including HTML

 1: <html>

 2: <head>

 45

 3: <title>Listing 3.2 A PHP script including HTML</title>

 4: </head>

 5: <body>

 6:

 7: <?php

 8: print "hello world";

 9: ?>

10:

11: </body>

12: </html>

As you can see, incorporating HTML into a PHP document is simply a matter of

typing in the code. The PHP interpreter ignores everything outside PHP open and

close tags. If you were to view Listing 3.2 with a browser, as shown in Figure 3.4,

you would see the string "hello world" in bold. If you were to view the document

source, as shown in Figure 3.5, the listing would look exactly like a normal HTML

document.

You can include as many blocks of PHP code as you need in a single document,

interspersing them with HTML as required. Although you can have multiple blocks of

code in a single document, they combine to form a single script. Anything defined in

the first block (variables, functions, or classes, for example) usually will be available

to subsequent blocks.

Figure 3.4: The output of Listing 3.2 as viewed in a browser.

 46

Figure 3.5: The output of Listing 3.2 as HTML source code.

Adding Comments to PHP Code
Code that seems clear at the time of writing, can seem like a hopeless tangle when

you come to amend it six months later. Adding comments to your code as you write

can save you time later on and make it easier for other programmers to work with

your code.

 NEW

TERM

A comment is text in a script that is ignored by the interpreter.

Comments can be used to make code more readable, or to annotate a

script.

Single line comments begin with two forward slashes (/ /) or a single hash sign (#).

All text from either of these marks until either the end of the line or the PHP close tag

is ignored.

// this is a comment

this is another comment

Multiline comments begin with a forward slash followed by an asterisk (/*) and end

with an asterisk followed by a forward slash (*/).

/*

this is a comment

none of this will

be parsed by the

interpreter
*/

 47

Summary

You should now have the tools at your disposal to run a simple PHP script on a

properly configured server.

In this hour, you created your first PHP script. You learned how to use a text editor

to create and name a PHP document. You examined four sets of tags that you can

use to begin and end blocks of PHP code. You learned how to use the print() function

to send data to the browser, and you brought HTML and PHP together into the same

script. Finally, you learned about comments and how to add them to PHP

documents.

Q&A

Q Which are the best start and end tags to use?

A It is largely a matter of preference. For the sake of portability the standard tags

(<?php ?>) are probably the safest bet. Short tags are enabled by default and have

the virtue of brevity.

Q What editors should I avoid when creating PHP code?

A Do not use word processors that format text for printing (such as Word, for

example). Even if you save files created using this type of editor in plain text format,

hidden characters are likely to creep into your code.

Q When should I comment my code?

A This is a matter of preference once again. Some short scripts will be

self-explanatory to you, even after a long interval. For scripts of any length or

complexity, you should comment your code. This often saves you time and

frustration in the long run.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

 48

Quiz

Can a user read the source code of PHP script you have successfully installed?

What do the standard PHP delimiter tags look like?

What do the ASP PHP delimiter tags look like?

What do the script PHP delimiter tags look like?

What function would you use to output a string to the browser?

Activity

Familiarize yourself with the process of creating, uploading, and running PHP

scripts.

 49

Hour 4: The Building Blocks

Overview

In this hour, you are going to get your hands dirty with some of the nuts and bolts

of the language.

There's a lot of ground to cover, and if you are new to programming, you might feel

bombarded with information. Don't worry— you can always refer back here later on.

Concentrate on understanding rather than memorizing the features covered.

If you're already an experienced programmer, you should at least skim this hour's

lesson. It covers a few PHP-specific features.

In this hour, you will learn

About variables— what they are and how to use them

How to define and access variables

About data types

About some of the more commonly used operators

How to use operators to create expressions

How to define and use constants

Variables
A variable is a special container that you can define to "hold" a value. A variable

consists of a name that you can choose, preceded by a dollar ($) sign. The variable

name can include letters, numbers, and the underscore character (_). Variable

names cannot include spaces or characters that are not alphanumeric. The following

code defines some legal variables:

$a;

$a_longish_variable_name;

$2453;

$sleepyZZZZ

Remember that a semicolon (;) is used to end a PHP statement. The semicolons in

the previous fragment of code are not part of the variable names.

 NEW

TERM

A variable is a holder for a type of data. It can hold numbers, strings of

characters, objects, arrays, or booleans. The contents of a variable can

be changed at any time.

 50

As you can see, you have plenty of choices about naming, although it is unusual to

see a variable name that consists exclusively of numbers. To declare a variable, you

need only to include it in your script. You usually declare a variable and assign a

value to it in the same statement.

$num1 = 8;

$num2 = 23;

The preceding lines declare two variables, using the assignment operator (=) to

give them values. You will learn about assignment in more detail in the Operators

and Expressions section later in the hour. After you give your variables values, you

can treat them exactly as if they were the values themselves. In other words

print $num1;

is equivalent to

print 8;

as long as $num1 contains 8.

Dynamic Variables
As you know, you create a variable with a dollar sign followed by a variable name.

Unusually, the variable name can itself be stored in a variable. So, when assigning

a value to a variable

$user = "bob";

is equivalent to

$holder="user";

$$holder = "bob";

The $holder variable contains the string "user", so you can think of $$holder as a

dollar sign followed by the value of $holder. PHP interprets this as $user.

 Note You can use a string constant to define a dynamic variable instead of a

variable. To do so, you must wrap the string you want to use for the variable

name in braces:

${"user"} = "bob";

This might not seem useful at first glance. However, by using the

concatenation operator and a loop (see Hour 5, "Going with the Flow"), you

can use this technique to create tens of variables dynamically.

When accessing a dynamic variable, the syntax is exactly the same:

$user ="bob";

print $user;

is equivalent to

$user ="bob";

$holder="user";

 51

print $$holder;

If you want to print a dynamic variable within a string, however, you need to give

the interpreter some help. The following print statement:

$user="bob";

$holder="user";

print "$$holder";

does not print "bob" to the browser as you might expect. Instead it prints the strings

"$" and "user" together to make "$user". When you place a variable within

quotation marks, PHP helpfully inserts its value. In this case, PHP replaces $holder

with the string "user". The first dollar sign is left in place. To make it clear to PHP

that a variable within a string is part of a dynamic variable, you must wrap it in

braces. The print statement in the following fragment:

$user="bob";

$holder="user";

print "${$holder}";

now prints "bob", which is the value contained in $user.

Listing 4.1 brings some of the previous code fragments together into a single script

using a string stored in a variable to initialize and access a variable called $user.

Listing 4.1: Dynamically Setting and Accessing Variables

 1: <html>

 2: <head>

 3: <title>Listing 4.1 Dynamically setting and accessing variables</title>

 4: </head>

 5: <body>

 6: <?php

 7: $holder = "user";

 8: $$holder = "bob";

 9:

10: // could have been:

11: // $user = "bob";

12: // ${"user"} = "bob";

13:

14: print "$user
"; // prints "bob"

15: print $$holder; // prints "bob"

16: print "
";

17: print "${$holder}
"; // prints "bob"

18: print "${'user'}
"; // prints "bob"

19: ?>

 52

20: </body>

21: </html>

References to Variables
By default, variables are assigned by value. In other words, if you were to assign

$aVariable to $anotherVariable, a copy of the value held in $aVariable would be

stored in $anotherVariable. Subsequently changing the value of $aVariable would

have no effect on the contents of $anotherVariable. Listing 4.2 illustrates this.

Listing 4.2: Variables Are Assigned by Value

 1: <html>

 2: <head>

 3: <title>Listing 4.2 Variables are assigned by value</title>

 4: </head>

 5: <body>

 6: <?php

 7: $aVariable = 42;

 8: $anotherVariable = $aVariable;

 9: // a copy of the contents of $aVariable is placed in $anotherVariable

10: $aVariable = 325;

11: print $anotherVariable; // prints 42

12: ?>

13: </body>

14: </html>

This example initializes $aVariable, assigning the value 42 to it. $aVariable is then

assigned to $anotherVariable. A copy of the value of $aVariable is placed in

$anotherVariable. Changing the value of $aVariable to 325 has no effect on the

contents of $anotherVariable. The print statement demonstrates this by outputting

42 to the browser.

In PHP4, you can change this behavior, forcing a reference to $aVariable to be

assigned to $anotherVariable, rather than a copy of its contents. This is illustrated in

Listing 4.3.

Listing 4.3: Assigning a Variable by Reference

 1: <html>

 2: <head>

 3: <title>Listing 4.3 Assigning a variable by reference</title>

 4: </head>

 5: <body>

 53

 6: <?php

 7: $aVariable = 42;

 8: $anotherVariable = &$aVariable;

 9: // a copy of the contents of $aVariable is placed in $anotherVariable

10: $aVariable= 325;

11: print $anotherVariable; // prints 325

12: ?>

13: </body>

14: </html>

We have added only a single character to the code in Listing 4.2. Placing an

ampersand (&) in front of the $aVariable variable ensures that a reference to this

variable, rather than a copy of its contents, is assigned to $anotherVariable. Now

any changes made to $aVariable are seen when accessing $anotherVariable. In

other words, both $aVariable and $anotherVariable now point to the same value.

Because this technique avoids the overhead of copying values from one variable to

another, it can result in a small increase in performance. Unless your script assigns

variables intensively, however, this performance gain will be barely measurable.

 Note References to variables were introduced with PHP4.

Data Types

Different types of data take up different amounts of memory and may be treated

differently when they are manipulated in a script. Some programming languages

therefore demand that the programmer declare in advance which type of data a

variable will contain. PHP4 is loosely typed, which means that it will calculate data

types as data is assigned to each variable. This is a mixed blessing. On the one hand,

it means that variables can be used flexibly, holding a string at one point and an

integer at another. On the other hand, this can lead to confusion in larger scripts if

you expect a variable to hold one data type when in fact it holds something

completely different.

Table 4.1 shows the six data types available in PHP4.

Table 4.1: Data Types

Type Example Description

Integer 5 A whole

number

 54

Double 3.234 A floating-point

number

String "hello" A collection of

characters

Boolean true One of the

special values

true or false

Object See Hour 8,

"Objects"

Array See Hour 7,

"Arrays"

Of PHP4's six data types, we will leave arrays and objects for Hours 7 and 8.

You can use PHP4's built-in function gettype() to test the type of any variable. If you

place a variable between the parentheses of the function call, gettype() returns a

string representing the relevant type. Listing 4.4 assigns four different data types to

a single variable, testing it with gettype() each time.

 Note You can read more about calling functions in Hour 6, "Functions."

Listing 4.4: Testing the Type of a Variable

 1: <html>

 2: <head>

 3: <title>Listing 4.3 Testing the type of a variable</title>

 4: </head>

 5: <body>

 6: <?php

 7: $testing = 5;

 8: print gettype($testing); // integer

 9: print "
";

10: $testing = "five";

11: print gettype($testing); // string

12: print("
");

13: $testing = 5.0;

 55

14: print gettype($testing); // double

15: print("
");

16: $testing = true;

17: print gettype($testing); // boolean

18: print "
";

19: ?>

20: </body>

21: </html>

This script produces the following:

integer

string

double

boolean

An integer is a whole or real number. In simple terms, it can be said to be a number

without a decimal point. A string is a collection of characters. When you work with

strings in your scripts, they should always be surrounded by double (") or single (')

quotation marks. A double is a floating-point number. That is, a number that

includes a decimal point. A boolean can be one of two special values, true or false.

 Note Prior to PHP4, there was no boolean type. Although true was used, it

actually resolved to the integer 1.

Changing Type with settype()

PHP provides the function settype() to change the type of a variable. To use

settype(), you must place the variable to change (and the type to change it to)

between the parentheses and separated by commas. Listing 4.5 converts 3.14 (a

double) to the four types that we are covering in this hour.

Listing 4.5: Changing the Type of a Variable with settype()

 1: <html>

 2: <head>

 3: <title>Listing 4.5 Changing the type of a variable with settype()</title>

 4: </head>

 56

 5: <body>

 6: <?php

 7: $undecided = 3.14;

 8: print gettype($undecided); // double

 9: print " -- $undecided
"; // 3.14

10: settype($undecided, string);

11: print gettype($undecided); // string

12: print " -- $undecided
"; // 3.14

13: settype($undecided, integer);

14: print gettype($undecided); // integer

15: print " -- $undecided
"; // 3

16: settype($undecided, double);

17: print gettype($undecided); // double

18: print " -- $undecided
"; // 3.0

19: settype($undecided, boolean);

20: print gettype($undecided); // boolean

21: print " -- $undecided
"; // 1

22: ?>

23: </body>

24: </html>

In each case, we use gettype() to confirm that the type change worked and then

print the value of the variable $undecided to the browser. When we convert the

string "3.14" to an integer, any information beyond the decimal point is lost forever.

That's why $undecided still contains 3 after we have changed it back to a double.

Finally, we convert $undecided to a boolean. Any number other than 0 becomes true

when converted to a boolean. When printing a boolean in PHP, true is represented

as 1 and false as an empty string, so $undecided is printed as 1.

 57

Changing Type by Casting

By placing the name of a data type in brackets in front of a variable, you create a

copy of that variable's value converted to the data type specified. The principal

difference between settype() and a cast is the fact that casting produces a copy,

leaving the original variable untouched. Listing 4.6 illustrates this.

Listing 4.6: Casting a Variable

 1: <html>

 2: <head>

 3: <title>Listing 4.6 Casting a variable</title>

 4: </head>

 5: <body>

 6: <?php

 7: $undecided = 3.14;

 8: $holder = (double) $undecided;

 9: print gettype($holder) ; // double

10: print " -- $holder
"; // 3.14

11: $holder = (string) $undecided;

12: print gettype($holder); // string

13: print " -- $holder
"; // 3.14

14: $holder = (integer) $undecided;

15: print gettype($holder); // integer

16: print " -- $holder
"; // 3

17: $holder = (double) $undecided;

18: print gettype($holder); // double

19: print " -- $holder
"; // 3.14

20: $holder = (boolean) $undecided;

21: print gettype($holder); // boolean

22: print " -- $holder
"; // 1

23: ?>

 58

24: </body>

25: </html>

We never actually change the type of $undecided, which remains a double

throughout. In fact, by casting $undecided, we create a copy that is then converted

to the type we specify. This new value is then stored in the variable $holder.

Because we are working with a copy of $undecided, we never discard any

information from it as we did in Listing 4.5.

Operators and Expressions

You can now assign data to variables. You can even investigate and change the data

type of a variable. A programming language isn't very useful, though, unless you

can manipulate the data you can store. Operators are symbols that make it possible

to use one or more values to produce a new value. A value that is operated on by an

operator is referred to as an operand.

 NEW

TERM

An operator is a symbol or series of symbols that, when used in

conjunction with values, performs an action and usually produces a

new value.

 NEW

TERM

An operand is a value used in conjunction with an operator. There

are usually two operands to one operator.

Let's combine two operands with an operator to produce a new value:

4 + 5

4 and 5 are operands. They are operated on by the addition operator (+) to produce

9. Operators almost always sit between two operands, though you will see a few

exceptions later in this hour.

The combination of operands with an operator to manufacture a result is called an

expression. Although most operators form the basis of expressions, an expression

need not contain an operator. In fact in PHP, an expression is defined as anything

that resolves to a value. This includes integer constants such as 654, variables such

as $user, and function calls such as gettype(). The expression (4 + 5), therefore is

an expression that consists of two further expressions and an operator.

 NEW

TERM

An expression is any combination of functions, values, and

operators that resolve to a value. As a rule of thumb, if you can use

it as if it were a value, it is an expression.

 59

Now that we have the principles out of the way, it's time to take a tour of PHP4's

more common operators.

The Assignment Operator

You have met the assignment operator each time we have initialized a variable. It

consists of the single character =. The assignment operator takes the value of its

right-hand operand and assigns it to its left-hand operand:

$name ="matt";

The variable $name now contains the string "matt". Interestingly, this construct is

an expression. It might look at first glance that the assignment operator simply

changes the variable $name without producing a value, but in fact, a statement that

uses the assignment operator always resolves to a copy of the value of the right

operand. Thus

print ($name = "matt");

prints the string "matt" to the browser in addition to assigning "matt" to $name.

Arithmetic Operators

The arithmetic operators do exactly what you would expect. Table 4.2 lists these

operators. The addition operator adds the right operand to the left operand. The

subtraction operator subtracts the right-hand operand from the left. The division

operator divides the left-hand operand by the right. The multiplication operator

multiplies the left-hand operand by the right. The modulus operator returns the

remainder of the left operand divided by the right.

Table 4.2: Arithmetic Operators

Operator Name Example Example Result

+ Addition 10+3 13

− Subtraction 10− 3 7

/ Division 10/3 3.3333333333333

* Multiplication 10*3 30

% Modulus 10%3 1

 60

The Concatenation Operator

The concatenation operator is a single dot. Treating both operands as strings, it

appends the right-hand operand to the left. So

"hello"." world"

returns

"hello world"

Regardless of the data types of the operands, they are treated as strings, and the

result always is a string.

More Assignment Operators

Although there is really only one assignment operator, PHP4 provides a number of

combination operators that transform the left-hand operand as well as return a

result. As a rule, operators use their operands without changing their values.

Assignment operators break this rule. A combined assignment operator consists of

a standard operator symbol followed by an equals sign. Combination assignment

operators save you the trouble of using two operators yourself. For example,

$x = 4;

$x += 4; // $x now equals 8

is equivalent to

$x = 4;

$x = $x + 4; // $x now equals 8

There is an assignment operator for each of the arithmetic operators and one for the

concatenation operator. Table 4.3 lists some of the most common.

Table 4.3: Some Combined Assignment Operators

Operator Example Equivalent to

+= $x += 5 $x = $x + 5

− = $x − = 5 $x = $x − 5

/= $x /= 5 $x = $x / 5

 61

*= $x *= 5 $x = $x * 5

%= $x%=5 $x = $x % 5

.= $x .= "test" $x = $x" test"

Each of the examples in Table 4.3 transforms the value of $x using the value of the

right-hand operand.

Comparison Operators

Comparison operators perform tests on their operands. They return the boolean

value true if the test is successful, or false otherwise. This type of expression is

useful in control structures, such as if and while statements. You will meet these in

Hour 5.

To test whether the value contained in $x is smaller than 5, for example, you would

use the less than operator:

$x < 5

If $x contained 3, this expression would be equivalent to the value true. If $x

contained 7, the expression would resolve to false.

Table 4.4 lists the comparison operators.

Table 4.4: Comparison Operators

Operator Name Returns

True if

Example Result

== Equivalence Left is

equivalent

to right

$x == 5 false

!= Non-equivalence Left is not

equivalent

to right

$x != 5 true

=== Identical Left is

equivalent

to right and

they are the

same type

$x === 5 false

 62

> Greater Left is than

greater

than right

$x >4 false

>= Greater than or

equal to

Left is

greater

than or

equal to

right

$x >= 4 true

< Less than Left is less

than right

x < 4 false

<= Less than or equal

to

Left is less

than or

equal to

right

$x <= 4 true

These operators are most commonly used with integers or doubles, although the

equivalence operator is also used to compare strings.

Creating More Complex Test Expressions with the Logical Operators

The logical operators test combinations of booleans. The or operator, for example

returns true if either the left or the right operand is true.

true || false

would return true.

The and operator only returns true if both the left and right operands are true.

true && false

would return false. It's unlikely that you would use a logical operator to test boolean

constants, however. It would make more sense to test two or more expressions that

resolve to a boolean. For example,

($x > 2) && ($x < 15)

would return true if $x contained a value that is greater than 2 and smaller than 15.

We include the parentheses to make the code easier to read. Table 4.5 lists the

logical operators.

 63

Table 4.5: Logical Operators

Operator Name Returns

True if…

Example Result

|| Or Left or right

is true

true || false true

or Or Left or right

is true

true || false true

xor Xor Left or right

is true but

not both

true || true false

&& And Left and

right are

true

true && false false

and And Left and

right are

true

true && false false

! Not The single

operand is

not true

! true false

Why are there two versions of both the or and the and operators? The answer lies in

operator precedence, which you will look at later in this section.

Automatically Incrementing and Decrementing an Integer Variable

When coding in PHP, you will often find it necessary to increment or decrement an

integer variable. You will usually need to do this when you are counting the

iterations of a loop. You have already learned two ways of doing this. I could

increment the integer contained by $x with the addition operator

$x = $x + 1; // $x is incremented

or with a combined assignment operator

$x += 1; // $x is incremented

 64

In both cases, the resultant integer is assigned to $x. Because expressions of this

kind are so common, PHP provides some special operators that allow you to add or

subtract the integer constant 1 from an integer variable, assigning the result to the

variable itself. These are known as the post-increment and post-decrement

operators. The post-increment operator consists of two plus symbols appended to a

variable name.

$x++; // $x is incremented

increments the variable $x by one. Using two minus symbols in the same way

decrements the variable:

$x− − ; // $x is decremented

If you use the post-increment or post-decrement operators in conjunction with a

conditional operator, the operand will only be modified after the test has been

completed:

$x = 3;

$x++ < 4; // true

In the previous example, $x contains 3 when it is tested against 4 with the less than

operator, so the test expression returns true. After this test is complete, $x is

incremented.

In some circumstances, you might want to increment or decrement a variable in a

test expression before the test is carried out. PHP provides the pre-increment and

pre-decrement operators for this purpose. On their own, these operators behave in

exactly the same way as the post-increment and post-decrement operators. They

are written with the plus or minus symbols preceding the variable:

++$x; // $x is incremented

− − $x; // $x is decremented

If these operators are used as part of a test expression, the incrementation occurs

before the test is carried out.

$x = 3;

++$x < 4; // false

In the previous fragment, $x is incremented before it is tested against 4. The test

expression returns false because 4 is not smaller than 4.

 65

Operator Precedence

When you use an operator, the interpreter usually reads your expression from left to

right. For complex expressions that use more than one operator, though, the waters

can become a little murky. First, consider a simple case:

4 + 5

There's no room for confusion, here. PHP simply adds 4 to 5. What about the next

fragment?

4 + 5 * 2

This presents a problem. Does it mean the sum of 4 and 5, which should then be

multiplied by 2, giving the result 18? Does it mean 4 plus the result of 5 multiplied

by 2, resolving to 14? If you were to read simply from left to right, the former would

be true. In fact, PHP attaches different precedence to operators. Because the

multiplication operator has higher precedence than the addition operator does, the

second solution to the problem is the correct one.

You can force PHP to execute the addition expression before the multiplication

expression with parentheses:

(4 + 5) * 2

Whatever the precedence of the operators in a complex expression, it is a good idea

to use parentheses to make your code clearer and to save you from obscure bugs.

Table 4.6 lists the operators covered in this hour in precedence order (highest first).

Table 4.6: Order of Precedence for Selected Operators

Operators

++ − − (cast)

/ *%

+ −

< <= => >

== === !=

&&

||

 66

= += − = /= *=%= .=

and

xor

or

As you can see, or has a lower precedence than || and and has a lower precedence

than &&, so you could use the lower-precedence logical operators to change the way

a complex test expression is read. This is not necessarily a good idea. The following

two expressions are equivalent, but the second is much easier to read:

$x and $y || $z

($x && $y) || $z

Constants

Variables offer a flexible way of storing data. You can change their values and the

type of data they store at any time. If, however, you want to work with a value that

you do not want to alter throughout your script's execution, you can define a

constant. You must use PHP's built-in function define() to create a constant. After

you have done this, the constant cannot be changed. To use the define() function,

you must place the name of the constant and the value you want to give it within the

call's parentheses:

define("CONSTANT_NAME", 42);

The value you want to set can only be a number or a string. By convention, the

name of the constant should be in capitals. Constants are accessed with the

constant name only; no dollar symbol is required. Listing 4.7 defines and accesses

a constant.

Listing 4.7: Defining a Constant

 1: <html>

 2: <head>

 3: <title>Listing 4.7 Defining a constant</title>

 4: </head>

 5: <body>

 6: <?php

 67

 7: define ("USER", "Gerald");

 8: print "Welcome ".USER;

 9: ?>

10: </body>

11: </html>

Notice that we used the concatenation operator to append the value held by our

constant to the string "Welcome". This is because the interpreter has no way of

distinguishing between a constant and a string within quotation marks.

Predefined Constants

PHP automatically provides some built-in constants for you. __FILE__, for example,

returns the name of the file currently being read by the interpreter. __LINE__

returns the line number of the file. These constants are useful for generating error

messages. You can also find out which version of PHP is interpreting the script with

PHP_VERSION. This can be useful if you want to limit a script to run on a particular

PHP release.

Summary

In this hour, you covered some of the basic features of the PHP language. You

learned about variables and how to assign to them using the assignment operator.

You learned about dynamic or "variable" variables. You also learned how to assign

to variables by reference rather than by value. You were introduced to operators

and learned how to combine some of the most common of these into expressions.

Finally, you learned how to define and access constants.

Q&A

Q Why can it be useful to know the type of data a variable holds?

A Often the data type of a variable constrains what you can do with it. You may want

to make sure that a variable contains an integer or a double before using it in a

mathematical calculation, for example.

 68

You explore situations of this kind a little further in Hour 16, "Working with Data."

Q Should I obey any conventions when naming variables?

A Your goal should always be to make your code both easy to read and understand.

A variable such as $ab123245 tells you nothing about its role in your script and

invites typos. Keep your variable names short and descriptive.

A variable named $f is unlikely to mean much to you when you return to your code

after a month or so. A variable named $filename, on the other hand, should make

more sense.

Q Should I learn the operator precedence table?

A There is no reason why you shouldn't, but I would save the effort for more useful

tasks. By using parentheses in your expressions, you can make your code easy to

read at the same time as defining your own order of precedence.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

Which of the following variable names is not valid?

$a_value_submitted_by_a_user

$666666xyz

$xyz666666

$_____counter____

$the first

$file-name

How could you use the string variable created in the assignment expression

$my_var = "dynamic";

to create a "variable" variable, assigning the integer 4 to it. How might you access

this new variable?

 69

What will the following statement output?

print gettype("4");

What will be the output from the following code fragment?

$test_val = 5.4566;

settype($test_val, "integer");

print $test_val;

Which of the following statements does not contain an expression?

4;

gettype(44);

5/12;

Which of the statements in question 5 contains an operator?

What value will the following expression return?

5 < 2

What data type will the returned value be?

Activities

Create a script that contains at least five different variables. Populate them with

values of different data types and use the gettype() function to print each type to

the browser.

Assign values to two variables. Use comparison operators to test whether the

first value is

The same as the second

Less than the second

Greater than the second

Less than or equal to the second

Print the result of each test to the browser.

Change the values assigned to your test variables and run the script again.

 70

Hour 5: Going with the Flow

Overview

The scripts created in the last hour flow only in a single direction. The same

statements are executed in the same order every time a script is run. This does not

leave much room for flexibility.

You now will look at some structures that enable your scripts to adapt to

circumstances. In this hour, you will learn

How to use the if statement to execute code only if a test expression evaluates

to true

How to execute alternative blocks of code when the test expression of an if

statement evaluates to false

How to use the switch statement to execute code based on the value returned by

a test expression

How to repeat execution of code using a while statement

How to use for statements to make neater loops

How to break out of loops

How to nest one loop within another

Switching Flow

Most scripts evaluate conditions and change their behavior accordingly. The facility

to make decisions makes your PHP pages dynamic, capable of changing their output

according to circumstances. Like most programming languages, PHP4 allows you to

do this with an if statement.

The if Statement

The if statement evaluates an expression between parentheses. If this expression

results in a true value, a block of code is executed. Otherwise, the block is skipped

entirely. This enables scripts to make decisions based on any number of factors.

if (expression)

 {

 71

 // code to execute if the expression evaluates to true

 }

Listing 5.1 executes a block of code only if a variable contains the string "happy".

Listing 5.1: An if Statement

 1: <html>

 2: <head>

 3: <title>Listing 5.1</title>

 4: </head>

 5: <body>

 6: <?php

 7: $mood = "happy";

 8: if ($mood == "happy")

 9: {

10: print "Hooray, I'm in a good mood";

11: }

12: ?>

13: </body>

14: </html>

You use the comparison operator == to compare the variable $mood with the string

"happy". If they match, the expression evaluates to true, and the code block below

the if statement is executed. Although the code block is wrapped in braces in the

example, this is only necessary if the block contains more than one line. The

following fragment, therefore, would be acceptable:

if ($mood == "happy")

 print "Hooray, I'm in a good mood";

If you change the value of $mood to "sad" and run the script, the expression in the

if statement evaluates to false, and the code block is skipped. The script remains

sulkily silent.

 72

Using the else Clause with the if Statement

When working with the if statement, you will often want to define an alternative

block of code that should be executed if the expression you are testing evaluates to

false. You can do this by adding else to the if statement followed by a further block

of code:

if (expression)

 {

 // code to execute if the expression evaluates to true

 }

else

 {

 // code to execute in all other cases

 }

Listing 5.2 amends the example in Listing 5.1 so that a default block of code is

executed if $mood is not equivalent to "happy".

Listing 5.2: An if Statement That Uses else

 1: <html>

 2: <head>

 3: <title>Listing 5.2</title>

 4: </head>

 5: <body>

 6: <?php

 7: $mood = "sad";

 8: if ($mood == "happy")

 9: {

10: print "Hooray, I'm in a good mood";

11: }

12: else

13: {

 73

14: print "Not happy but $mood";

15: }

16: ?>

17: </body>

18: </html>

$mood contains the string "sad", which is not equivalent to "happy", so the

expression in the if statement evaluates to false. This means that the first block of

code is skipped. The block of code after else, therefore, is executed, and the

message "Not happy but sad" is printed to the browser.

Using the else clause with the if statement allows scripts to make sophisticated

decisions, but you currently are limited to an either -or branch. PHP4 allows you to

evaluate multiple expressions in a cascade.

Using the elseif Clause with the if Statement

You can use an if-elseif-else construct to test multiple expressions before offering a

default block of code:

if (expression)

 {

 // code to execute if the expression evaluates to true

 }

elseif (another expression)

 {

 // code to execute if the previous expression failed

 // and this one evaluates to true

else

 {

 // code to execute in all other cases

 }

If the first expression does not evaluate to true, then the first block of code is

ignored. The elseif clause then causes another expression to be evaluated. Once

 74

again, if this expression evaluates to true, then the second block of code is executed.

Otherwise, the block of code associated with the else clause is executed. You can

include as many elseif clauses as you want, and if you don't need a default action,

you can omit the else clause.

Listing 5.3 adds an elseif clause to the previous example.

Listing 5.3: An if Statement That Uses else and elseif

 1: <html>

 2: <head>

 3: <title>Listing 5.3</title>

 4: </head>

 5: <body>

 6: <?php

 7: $mood = "sad";

 8: if ($mood == "happy")

 9: {

10: print "Hooray, I'm in a good mood";

11: }

12: elseif ($mood == "sad")

13: {

14: print "Awww. Don't be down!";

15: }

16: else

17: {

18: print "Neither happy nor sad but $mood";

19: }

20: ?>

21: </body>

22: </html>

 75

Once again, $mood holds a string, "sad". This is not equivalent to "happy", so the

first block is ignored. The elseif clause tests for equivalence between the contents of

$mood and "sad", which evaluates to true. This block of code is therefore executed.

The switch Statement

The switch statement is an alternative way of changing program flow according to

the evaluation of an expression. There are some key differences between the switch

and if statements. Using the if statement in conjunction with elseif, you may

evaluate multiple expressions. switch evaluates only one expression, executing

different code according to the result of that expression, as long as the expression

evaluates to a simple type (a number, a string, or a boolean). The result of an

expression evaluated as part of an if statement is read as either true or false. The

expression of a switch statement yields a result that is tested against any number of

values.

switch (expression)

 {

 case result1:

 // execute this if expression results in result1

 break;

 case result2:

 // execute this if expression results in result2

 break;

 default:

 // execute this if no break statement

 // has been encountered hitherto

 }

The switch statement's expression is often simply a variable. Within the switch

statement's block of code, you find a number of case statements. Each of these

tests a value against the result of the switch statement's expression. If these are

equivalent, then the code after the case statement is executed. The break

statement ends execution of the switch statement altogether. If this is left out, the

next case statement's expression is evaluated. If the optional default statement is

reached, its code is executed.

 76

 Caution Don't forget to include a break statement at the end of any code that

will be executed as part of a case statement. Without break, the

program flow will continue to the next case statement and ultimately

to the default statement. In most cases, this will not be the behavior

that you will be expecting.

Listing 5.4 re-creates the functionality of the if statement example, using the switch

statement.

Listing 5.4: A switch Statement

 1: <html>

 2: <head>

 3: <title>Listing 5.4</title>

 4: </head>

 5: <body>

 6: <?php

 7: $mood = "sad";

 8: switch ($mood)

 9: {

10: case "happy":

11: print "Hooray, I'm in a good mood";

12: break;

13: case "sad":

14: print "Awww. Don't be down!";

15: break;

16: default:

17: print "Neither happy nor sad but $mood";

18: }

19: ?>

20: </body>

21: </html>

Once again, the $mood variable is initialized to "sad". The switch statement uses

this variable as its expression. The first case statement tests for equivalence

 77

between "happy" and the value of $mood. There is no match, so script execution

moves on to the second case statement. The string "sad" is equivalent to the value

of $mood, so this block of code is executed. The break statement ends the process.

Using the ? Operator

The ? or ternary operator is similar to the if statement but returns a value derived

from one of two expressions separated by a colon. Which expression is used to

generate the value returned depends on the result of a test expression:

(expression)?returned_if_expression_is_true:returned_if_expression_is

_false;

If the test expression evaluates to true, the result of the second expression is

returned; otherwise, the value of the third expression is returned. Listing 5.5 uses

the ternary operator to set the value of a variable according to the value of $mood.

Listing 5.5: Using the ? Operator

 1: <html>

 2: <head>

 3: <title>Listing 5.5</title>

 4: </head>

 5: <body>

 6: <?php

 7: $mood = "sad";

 8: $text = ($mood=="happy")?"Hooray, I'm in a good mood":"Not happy but

$mood";

 9: print "$text";

10: ?>

11: </body>

12: </html>

$mood is set to "sad". $mood is tested for equivalence to the string "happy".

Because this test returns false, the result of the third of the three expressions is

returned.

 78

The ternary operator can be difficult to read but is useful if you are dealing with only

two alternatives and like to write compact code.

Loops

So far you've looked at decisions that a script can make about what code to execute.

Scripts can also decide how many times to execute a block of code. Loop statements

are designed to enable you to achieve repetitive tasks. Almost without exception, a

loop continues to operate until a condition is achieved, or you explicitly choose to

exit the loop.

The while Statement

The while statement looks similar in structure to a basic if statement:

while (expression)

 {

 // do something

 }

As long as a while statement's expression evaluates to true, the code block is

executed over and over again. Within the block, you usually change something that

affects the while statement's expression; otherwise, your loop continues indefinitely.

Listing 5.6 creates a while loop that calculates and prints multiples of two.

Listing 5.6: A while Statement

 1: <html>

 2: <head>

 3: <title>Listing 5.6</title>

 4: </head>

 5: <body>

 6: <?php

 7: $counter = 1;

 8: while ($counter <= 12)

 9: {

10: print "$counter times 2 is ".($counter*2)."
";

 79

11: $counter++;

12: }

13: ?>

14: </body>

15: </html>

In this example, we initialize a variable $counter. The while statement tests the

$counter variable. As long as the integer contained by $counter is smaller than or

equal to 12, the loop continues to run. Within the while statement's code block, the

value contained by $counter is multiplied by two, and the result is printed to the

browser. Then $counter is incremented. This last stage is extremely important. If

you were to forget to change $counter, the while expression would never resolve to

false, and the loop would never end.

The do..while Statement

A do...while statement looks a little like a while statement turned on its head. The

essential difference between the two is that the code block is executed before the

truth test and not after it:

do {

 // code to be executed

 }

 while (expression);

 Note The test expression of a do...while statement should always end with a

semicolon.

This statement might be useful if you want the code block to be executed at least

once even if the while expression evaluates to false. Listing 5.7 creates a do...while

statement. The code block is executed a minimum of one time.

Listing 5.7: The do...while Statement

 1: <html>

 2: <head>

 3: <title>Listing 5.7</title>

 4: </head>

 80

 5: <body>

 6: <?php

 7: $num = 1;

 8: do

 9: {

10: print "Execution number: $num
\n";

11: $num++;

12: }

13: while ($num > 200 && $num < 400);

14: ?>

15: </body>

16: </html>

The do...while statement tests whether the variable $num contains a value that is

greater than 200 and smaller than 400. We have initialized $num to 1 so this

expression returns false. Nonetheless, the code block is executed before the

expression is evaluated, so the statement will print a single line to the browser.

The for Statement

You cannot achieve anything with a for statement that you cannot do with a while

statement. On the other hand, the for statement is often a neater and safer way of

achieving the same effect. Earlier, Listing 5.6 initialized a variable outside the while

statement. The while statement then tested the variable in its expression. The

variable was incremented within the code block. The for statement allows you to

achieve this on a single line. This allows for more compact code and makes it less

likely that you forget to increment a counter variable, thereby creating an infinite

loop.

for (variable assignment; test expression; variable increment)

 {

 // code to be executed

 }

 81

Each of the expressions within the parentheses of the for statement is separated by

semicolons. Usually, the first expression initializes a counter variable, the second

expression is the test condition for the loop, and the third expression increments the

counter. Listing 5.8 shows a for statement that re-creates the example in Listing 5.6,

which multiplies 12 numbers by 2.

Listing 5.8: Using the for Statement

 1: <html>

 2: <head>

 3: <title>Listing 5.8</title>

 4: </head>

 5: <body>

 6: <?php

 7: for ($counter=1; $counter<=12; $counter++)

 8: {

 9: print "$counter times 2 is ".($counter*2)."
";

10: }

11: ?>

12: </body>

13: </html>

The results of Listings 5.6 and 5.8 are exactly the same. The for statement, though,

makes the code more compact. Because $counter is initialized and incremented at

the top of the statement, the logic of the loop is clear at a glance. Within the for

statement's parentheses, the first expression initializes the $counter variable and

sets it to 1. The test expression checks that $counter contains a value that is less

than or equal to 12. The final expression increments the $counter variable.

When program flow reaches the for loop, the $counter variable is initialized, and the

test expression is evaluated. If the expression evaluates to true, the code block is

executed. The $counter variable is then incremented and the test expression

evaluated again. This process continues until the test expression evaluates to false.

 82

Breaking Out of Loops with the break Statement

Both while and for statements incorporate a built-in test expression with which you

can end a loop. The break statement, though, enables you to break out of a loop

according to additional tests. This can provide a safeguard against error. Listing 5.9

creates a simple for statement that divides a large number by a variable that is

incremented, printing the result to the screen.

Listing 5.9: A for Loop That Divides 4000 by Ten Incremental Numbers

 1: <html>

 2: <head>

 3: <title>Listing 5.9</title>

 4: </head>

 5: <body>

 6: <?php

 7: for ($counter=1; $counter <= 10, $counter++)

 8: {

 9: $temp = 4000/$counter;

10: print "4000 divided by $counter is... $temp
";

11: }

12: ?>

13: </body>

14: </html>

This example initializes the variable $counter to 1. The for statement's test

expression checks that $counter is smaller than or equal to 10. Within the code

block, 4000 is divided by $counter, printing the result to the browser.

This seems straightforward enough. What, though, if the value you place in

$counter comes from user input? The value could be a minus number, or even a

string. Let's take the first instance. Changing the initial value of $counter from 1 to

− 4 causes 4000 to be divided by zero as the code block is executed for the fifth time,

which is not advisable. Listing 5.10 guards against this by breaking out of the loop

if the $counter variable contains zero.

 83

Listing 5.10: Using the break Statement

 1: <html>

 2: <head>

 3: <title>Listing 5.10</title>

 4: </head>

 5: <body>

 6: <?php

 7: $counter = − 4;

 8: for (; $counter <= 10; $counter++)

 9: {

10: if ($counter == 0)

11: break;

12: $temp = 4000/$counter;

13: print "4000 divided by $counter is... $temp
";

14: }

15: ?>

16: </body>

17: </html>

 Note Dividing a number by zero does not cause a fatal error in PHP4. Instead, a

warning is generated and execution continues.

Use an if statement to test the value of $counter. If it is equivalent to zero, the break

statement immediately halts execution of the code block, and program flow

continues after the while statement. Notice that we initialized the $counter variable

outside the for statement's parentheses to simulate a situation in which the value of

$counter is set according to form input or a database look up.

 Tip You can omit any of the expressions of a for statement, but you must

remember to retain the semicolons.

 84

Skipping an Iteration with the continue Statement

The continue statement ends execution of the current iteration but doesn't cause

the loop as a whole to end. Instead, the next iteration is immediately begun. Using

the break statement in Listing 5.10 was a little drastic. With the continue statement

in Listing 5.11, you can avoid a divide by zero error without ending the loop

completely.

Listing 5.11: Using the continue Statement

 1: <html>

 2: <head>

 3: <title>Listing 5.11</title>

 4: </head>

 5: <body>

 6: <?php

 7: $counter = − 4;

 8: for (; $counter <= 10; $counter++)

 9: {

10: if ($counter == 0)

11: continue;

12: $temp = 4000/$counter;

13: print "4000 divided by $counter is... $temp
";

14: }

15: ?>

16: </body>

17: </html>

We have swapped the break statement for a continue statement. If the $counter

variable is equivalent to zero, the iteration is skipped, and the next one immediately

is started.

 Caution The break and continue statements can make code more difficult

 85

to read. Because they often add layers of complexity to the logic

of the loop statements that contain them, they can lead to

obscure bugs. They are best used sparingly.

Nesting Loops

Loop statements can contain other loop statements. This combination is particularly

useful when working with dynamically created HTML tables. Listing 5.12 uses two

for statements to print a multiplication table to the browser.

Listing 5.12: Nesting Two for Loops

 1: <html>

 2: <head>

 3: <title>Listing 5.12</title>

 4: </head>

 5: <body>

 6: <?php

 7: print "<table border="1">\n";

 8: for ($y=1; $y<=12; $y++)

 9: {

10: print "<tr>\n";

11: for ($x=1; $x<=12; $x++)

12: {

13: print "\t<td>";

14: print ($x*$y);

15: print "</td>\n";

16: }

17: print "</tr>\n";

18: }

19: print "</table>";

20: ?>

21: </body>

 86

22: </html>

The outer for statement initializes a variable called $y, setting its starting value to 1.

It defines an expression that tests that $y is smaller or equal to 12 and defines the

increment for $y. For each iteration, the code block prints a TR (table row) HTML

element and defines another for statement. This inner loop initializes a variable

called $x and defines expressions along the same lines as for the outer loop. For

each iteration, the inner loop prints a TD (table cell) element to the browser, as well

as the result of $x multiplied by $y. The result is a neatly formatted multiplication

table.

Summary

In this hour, you learned about control structures and the ways in which they can

help to make your scripts flexible and dynamic. Most of these structures will

reappear regularly throughout the rest of the book.

You learned how to define an if statement and how to provide for alternative actions

with the elseif and else clauses. You learned how to use the switch statement to

change flow according to multiple equivalence tests on the result of an expression.

You learned about loops, in particular, the while and for statements, and you

learned how to use break and continue to prematurely end the execution of a loop

or to skip an iteration. Finally, you learned how to nest one loop within another and

saw a typical use for this structure.

Q&A

Q Must a control structure's test expression result in a boolean value?

A Ultimately, yes, but in the context of a test expression zero, an undefined variable,

or an empty string will be converted to false for the purposes of the test. All other

values will evaluate to true.

Q Must I always surround a code block in a control statement with

brackets?

A If the code you want executed as part of a control structure consists of only a

single line, you can omit the brackets.

 87

Q Does this hour cover every kind of loop there is?

A In Hour 7, "Arrays," you encounter the foreach statement, which enables you to

loop through every element in an array.

 88

Hour 6: Functions

Overview

Functions are the heart of a well-organized script, making code easy to read and

reuse. No large project would be manageable without them.

Throughout this hour, we will investigate functions and demonstrate some of the

ways in which they can save you from repetitive work. In this hour, you will learn

How to define and call functions

How to pass values to functions and receive values in return

How to call a function dynamically using a string stored in a variable

How to access global variables from within a function

How to give a function a "memory"

How to pass data to functions by reference

What Is a Function?
You can think of a function as a machine. A machine takes the raw materials you

feed it and works with them to achieve a purpose or to produce a product. A function

accepts values from you, processes them, and then performs an action (printing to

the browser, for example) or returns a new value, possibly both.

If you needed to bake a single cake, you would probably do it yourself. If you

needed to bake thousands of cakes, you would probably build or acquire a

cake-baking machine. Similarly, when deciding whether to create a function, the

most important factor to consider is the extent to which it can save you from

repetition.

A function, then, is a self-contained block of code that can be called by your scripts.

When called, the function's code is executed. You can pass values to functions,

which they will then work with. When finished, a function can pass a value back to

the calling code.

 NEW

TERM

A function is a block of code that is not immediately executed but can

be called by your scripts when needed. Functions can be built-in or

user-defined. They can require information to be passed to them and

usually return a value.

Calling Functions
Functions come in two flavors— those built in to the language and those you define

 89

yourself. PHP4 has hundreds of built-in functions. The very first script in this book

consisted of a single function call:

print("Hello Web");

 Note print() is not a typical function in that it does not require parentheses in

order to run successfully.

print(("Hello Web");

and

print "Hello Web";

are equally valid. This is an exception. All other functions require

parentheses, whether or not they accept arguments.

In this example, we called the print() function, passing it the string "Hello Web". The

function then went about the business of writing the string. A function call consists

of the function name, print in this case, followed by parentheses. If you want to pass

information to the function, you place it between these parentheses. A piece of

information passed to a function in this way is called an argument. Some functions

require that more than one argument be passed to them. Arguments in these cases

must be separated by commas:

some_function($an_argument, $another_argument);

print() is typical in that it returns a value. Most functions give you some information

back when they've completed their task, if only to tell whether their mission was

successful. print() returns a boolean, therefore.

The abs() function, for example, requires a signed numeric value and returns the

absolute value of that number. Let's try it out in Listing 6.1.

Listing 6.1: Calling the Built in abs() Function

 1: <html>

 2: <head>

 3: <title>Listing 6.1</title>

 4: </head>

 5: <body>

 6: <?php

 7: $num = − 321;

 8: $newnum = abs($num);

 9: print $newnum;

10: // prints "321"

11: ?>

12: </body>

13: </html>

 90

In this example, we assign the value − 321 to a variable $num. We then pass that

variable to the abs() function, which made the necessary calculation and returned a

new value. We assign this to the variable $newnum and print the result. In fact, we

could have dispensed with temporary variables altogether, passing our number

straight to abs(), and directly printing the result:

print(abs(− 321));

The rules for calling user-defined functions are almost exactly the same.

 NEW

TERM

An argument is a value passed to a function. Arguments are included

within the parentheses of a function call. User-defined functions

include comma-separated argument names within the parentheses

of the function definition. These arguments then become available to

the function as local variables.

Defining a Function
You can define a function using the function statement:

function some_function($argument1, $argument2)

 {

 // function code here

 }

The name of the function follows the function statement and precedes a set of

parentheses. If your function is to require arguments, you must place

comma-separated variable names within the parentheses. These variables will be

filled by the values passed to your function. If your function requires no arguments,

you must nevertheless supply the parentheses.

Listing 6.2 declares a function.

Listing 6.2: Declaring a Function

 1: <html>

 2: <head>

 3: <title>Listing 6.2</title>

 4: </head>

 5: <body>

 6: <?php

 7: function bighello()

 8: {

 9: print "<h1>HELLO!</h1>";

10: }

11: bighello();

12: ?>

 91

13: </body>

14: </html>

The script in Listing 6.2 will simply output the string "HELLO" wrapped in an HTML

<H1> element. We declare a function bighello() that requires no arguments.

Because of this, we leave the parentheses empty. bighello() is a working function

but not terribly useful. Listing 6.3 creates a function that requires an argument and

actually does something helpful with it.

Listing 6.3: Declaring a Function That Requires Arguments

 1: <html>

 2: <head>

 3: <title>Listing 6.3</title>

 4: </head>

 5: <body>

 6: <?php

 7: function printBR($txt)

 8: {

 9: print ("$txt
\n");

10: }

11: printBR("This is a line");

12: printBR("This is a new line");

13: printBR("This is yet another line");

14: ?>

15: </body>

16: </html>

Figure 6.1: A function that prints a string with an appended
 tag.

 92

You can see the output from the script in Listing 6.3 in Figure 6.1. The printBR()

function expects a string, so we place the variable name $txt between the

parentheses when we declare the function. Whatever is passed to printBR() is

stored in $txt. Within the body of the function, we print the $txt variable, appending

a
 element and a newline character to it.

Now when we want to write a line to the browser, we can call printBR() instead of

the built-in print(), saving us the bother of typing the
 element.

Returning Values from User-Defined Functions
A function can return a value using the return statement in conjunction with a value

or object. return stops the execution of the function and sends the value back to the

calling code.

Listing 6.4 creates a function that returns the sum of two numbers.

Listing 6.4: A Function That Returns a Value

 1: <html>

 2: <head>

 3: <title>Listing 6.4</title>

 4: </head>

 5: <body>

 6: <?php

 7: function addNums($firstnum, $secondnum;

 8: {

 9: $result = $firstnum + $secondnum)

10: return $result;11: }

12: print addNums(3,5);

13: // will print "8"

14: ?>

15: </body>

16: </html>

The script in Listing 6.4 will print the number '8'. addNums() should be called with

two numeric arguments (3 and 5 in this case). These are stored in the variables

$firstnum and $secondnum. Predictably, addNums() adds the numbers contained in

these variables together and stores the result in a variable called $result. Once

again, we can dispense with a stage in this code, doing away with the temporary

$result variable altogether:

function addNums($firstnum, $secondnum)

 {

 93

 return ($firstnum + $secondnum);

 }

The return statement can return a value, an object, or even nothing at all. How a

value passed by return is arrived at can vary. The value could be hard-coded:

return 4;

It could be the result of an expression:

return ($a/$b);

It could be the value returned by yet another function call:

return (another_function($an_argument));

Dynamic Function Calls
It is possible to assign function names as strings to variables and then treat these

variables exactly as you would the function name itself. Listing 6.5 creates a simple

example of this.

Listing 6.5: Calling a Function Dynamically

 1: <html>

 2: <head>

 3: <title>Listing 6.5</title>

 4: </head>

 5: <body>

 6: <?php

 7: function sayHello()

 8: {

 9: print "hello
";

10: }

11: $function_holder = "sayHello";

12: $function_holder();

13: ?>

14: </body>

15: </html>

A string identical to the name of the sayHello() function is assigned to the

$function_holder variable. Once this is done, we can use this variable in conjunction

with parentheses to call the sayHello() function.

Why would we want to do this? In the example, we simply made more work for

ourselves by assigning the string "sayHello" to $function_holder. Dynamic function

calls are useful when you want to alter program flow according to changing

circumstances. We might want our script to behave differently according to a

 94

parameter set in a URL's query string, for example. We could extract the value of

this parameter and use it to call one of a number of functions.

PHP's built-in functions also make use of this feature. The array_walk() function, for

example uses a string to call a function for every element in an array. You can see

an example of array walk() in action in Hour 16.

Variable Scope

A variable declared within a function remains local to that function. In other words,

it will not be available outside the function or within other functions. In larger

projects, this can save you from accidentally overwriting the contents of a variable

when you declare two variables of the same name in separate functions.

Listing 6.6 creates a variable within a function and then attempts to print it outside

the function.

Listing 6.6: Variable Scope: A Variable Declared Within a Function Is

Unavailable Outside the Function

 1: <html>

 2: <head>

 3: <title>Listing 6.6</title>

 4: </head>

 5: <body>

 6: <?php

 7: function test()

 8: {

 9: $testvariable = "this is a test variable";

10: }

11: print "test variable: $testvariable
";

12: ?>

13: </body>

14: </html>

 95

Figure 6.2: Attempting to reference a variable defined within a function.

You can see the output of the script in Listing 6.6 in Figure 6.2. The value of the

variable $testvariable is not printed. This is because no such variable exists outside

the test() function. Note that attempting to access a nonexistent variable does not

cause an error.

Similarly, a variable declared outside a function will not automatically be available

within it.

Accessing Variables with the global Statement

From within a function, it is not possible by default to access a variable that has

been defined elsewhere. If you attempt to use a variable of the same name, you will

set or access a local variable only. Let's put this to the test in Listing 6.7.

Listing 6.7: Variables Defined Outside Functions Are Inaccessible from

Within a Function by Default

 1: <html>

 2: <head>

 3: <title>Listing 6.7</title>

 4: </head>

 5: <body>

 6: <?php

 7: $life = 42;

 8: function meaningOfLife()

 96

 9: {

10: print "The meaning of life is $life
";

11: }

12: meaningOfLife();

13: ?>

14: </body>

15: </html>

You can see the output from the script in Listing 6.7 in Figure 6.3. As you might

expect, the meaningOfLife() function has no access to the $life variable; $life is

empty when the function attempts to print it. On the whole, this is a good thing.

We're saved from potential clashes between identically named variables, and a

function can always demand an argument if it needs information about the outside

world. Occasionally, however, you may want to access an important global variable

from within a function without passing it in as an argument. This is where the global

statement comes into its own. Listing 6.8 uses global to restore order to the

universe.

Figure 6.3: Attempting to print a global variable from within a function.

Listing 6.8: Accessing Global Variables with the global Statement

 1: <html>

 2: <head>

 3: <title>Listing 6.8</title>

 4: </head>

 5: <body>

 97

 6: <?php

 7: $life=42;

 8: function meaningOfLife()

 9: {

10: global $life;

11: print "The meaning of life is $life
";

12: }

13: meaningOfLife();

14: ?>

15: </body>

16: </html>

You can see the output from the script in Listing 6.8 in Figure 6.4. By placing global

in front of the $life variable when we declare it in the meaning_of_life() function, we

make it refer to the global $life variable declared outside the function.

You will need to use the global statement for every function that wishes to access a

particular global variable.

Be careful, though. If we manipulate the contents of the variable within the function,

$life will be changed for the script as a whole. Usually, an argument is a copy of

whatever value is passed by the calling code; changing it in a function has no effect

beyond the function block. Changing a global variable within a function on the other

hand changes the original and not a copy. Use the global statement sparingly.

Figure 6.4: Successfully accessing a global variable from within a function using

 98

the global keyword.

Saving State Between Function Calls with the static
Statement
Variables within functions have a short but happy life on the whole. They come into

being when the andAnotherThing() function is called and die when execution

is finished. Once again, this is as it should be. It is usually best to build a script as a

series of self-contained blocks, each with as little knowledge of others as possible.

Occasionally, however, you may want to give a function a rudimentary memory.

Let's assume that we want a function to keep track of the number of times it has

been called. Why? In our examples, the function is designed to create numbered

headings in a script that dynamically builds online documentation.

We could, of course use our newfound knowledge of the global statement to do

this. We have a crack at this in Listing 6.9.

Listing 6.9: Using the global Statement to Remember the Value of a

Variable Between Function Calls

 1: <html>

 2: <head>

 3: <title>Listing 6.9</title>

 4: </head>

 5: <body>

 6: <?php

 7: $num_of_calls = 0;

 8: function andAnotherThing($txt)

 9: {

10: global $num_of_calls;

11: $num_of_calls++;

12: print "<h1>$num_of_calls. $txt</h1>";

13: }

14: andAnotherThing("Widgets");

15: print("We build a fine range of widgets<p>");

16: andAnotherThing("Doodads");

17: print("Finest in the world<p>");

18: ?>

19: </body>

20: </html>

 99

Figure 6.5: Using the global statement to keep track of the number of times a

function has been called.

This does the job. We declare a variable, $num_of_calls, outside the function

andAnotherThing(). We make this variable available to the function with the

global statement. You can see the output of Listing 6.9 in Figure 6.5.

Every time andAnotherThing() is called, $num_of_calls is incremented.

We can then print out a heading complete with a heading number.

This is not the most elegant solution, however. Functions that use the global
statement cannot be read as standalone blocks of code. In reading or reusing them,

we need to look out for the global variables that they manipulate.

This is where the static statement can be useful. If you declare a variable within a

function in conjunction with the static statement, the variable remains local to the

function. On the other hand, the function "remembers" the value of the variable

from execution to execution. Listing 6.10 adapts the code from Listing 6.9 to use the

static statement.

Listing 6.10: Using the static Statement to Remember the Value of a

Variable Between Function Calls

 1: <html>

 2: <head>

 3: <title>Listing 6.10</title>

 4: </head>

 5: <body>

 6: <?php

 7: function andAnotherThing($txt)

 8: {

 9: static $num_of_calls = 0;

10: $num_of_calls++;

 100

11: print "<h1>$num_of_calls. $txt</h1>";

12: }

13: andAnotherThing("Widgets");

14: print("We build a fine range of widgets<p>");

15: andAnotherThing("Doodads");

16: print("Finest in the world<p>");

17: ?>

18: </body>

19: </html>

andAnotherThing() has become entirely self-contained. When we declare the

$num_of_calls variable, we assign an initial value to it. This initial assignment

is ignored when the function is called a second time. Instead, the previous value of

$num_of_calls is remembered. We can now paste the andAnotherThing()

function into other scripts without worrying about global variables. Although the

output of Listing 6.10 is exactly the same as that for Listing 6.9, we have made the

code more elegant.

More About Arguments

You've already seen how to pass arguments to functions, but there's more to cover

yet. In this section, you'll look at a technique for giving your arguments default

values and explore a method of passing references to variables rather than copies of

their values to your functions.

Setting Default Values for Arguments

PHP gives you a nifty feature to help build flexible functions. Until now, we've said

that some functions "demand" one or more arguments. By making some arguments

optional, you can render your functions a little less autocratic.

Listing 6.11 creates a useful little function that wraps a string in an HTML font

element. We want to give the user of the function the chance to change the font

element's size attribute, so we demand a $size argument in addition to the string.

Listing 6.11: A Function Requiring Two Arguments

 1: <html>

 2: <head>

 101

 3: <title>Listing 6.11</title>

 4: </head>

 5: <body>

 6: <?php

 7: function fontWrap($txt, $size)

 8: {

 9: print "$txt</

font>";10: }

11: fontWrap("A heading
",5);

12: fontWrap("some body text
",3);

13: fontWrap("some more body text
",3);

14: fontWrap("yet more body text
",3);

15: ?>

16: </body>

17: </html>

Figure 6.6: A function that formats and outputs strings.

You can see the output from the script in Listing 6.11 in Figure 6.6. Useful though

this function is, we really only need to change the font size occasionally. Most of the

time we default to 3. By assigning a value to an argument variable within the

function definition's parentheses, we can make the $size argument optional. If the

function call doesn't define an argument for this, the value we have assigned to the

 102

argument is used instead. Listing 6.12 uses this technique to make the $size

argument optional.

Listing 6.12: A Function with an Optional Argument

 1: <html>

 2: <head>

 3: <title>Listing 6.12</title>

 4: </head>

 5: <body>

 6: <?php

 7: function fontWrap($txt, $size=3)

 8: {

 9: print "$txt";

10: }

11: fontWrap("A heading
",5);

12: fontWrap("some body text
");

13: fontWrap("some more body text
");

14: fontWrap("yet more body text
");

15: ?>

16: </body>

17: </html>

When the fontWrap() function is called with a second argument, this value is used to

set the size attribute of the font element. When we omit this argument, the default

value of 3 is used instead. You can create as many optional arguments as you want,

but when you've given an argument a default value, all subsequent arguments

should also be given defaults.

Passing References to Variables to Functions

When you pass arguments to functions they are stored as copies in parameter

variables. Any changes made to these variables in the body of the function are local

to that function and are not reflected beyond it. This is illustrated in Listing 6.13.

Listing 6.13: Passing an Argument to a Function by Value

 103

 1: <html>

 2: <head>

 3: <title>Listing 6.13</title>

 4: </head>

 5: <body>

 6: <?php

 7: function addFive($num)

 8: {

 9: $num += 5;

10: }

11: $orignum = 10;

12: addFive($orignum);

13: print($orignum);

14: ?>

15: </body>

16: </html>

The addFive() function accepts a single numeric value and adds 5 to it. It returns

nothing. We assign a value to a variable $orignum and then pass this variable to

addFive(). A copy of the contents of $orignum is stored in the variable $num.

Although we increment $num by 5, this has no effect on the value of $orignum.

When we print $orignum, we find that its value is still 10. By default, variables

passed to functions are passed by value. In other words, local copies of the values

of the variables are made.

It is possible to pass arguments to functions by reference. This means that a

reference to the variable is manipulated by the function rather than a copy of the

variable's value. Any changes made to an argument in these cases will change the

value of the original variable. You can pass an argument by reference by adding an

ampersand to the variable name in either the function call or the function definition.

Listings 6.14 and 6.15 show each technique in turn.

Listing 6.14: Using a Function Call to Pass an Argument to a Function by

Reference

 1: <html>

 104

 2: <head>

 3: <title>Listing 6.14</title>

 4: </head>

 5: <body>

 6: <?php

 7: function addFive($num)

 8: {

 9: $num += 5;

10: }

11: $orignum = 10;

12: addFive(&$orignum);

13: print($orignum);

14: ?>

15: </body>

16: </html>

Listing 6.15: Using a Function Definition to Pass an Argument to a Function

by Reference

 1: <html>

 2: <head>

 3: <title>Listing 6.15</title>

 4: </head>

 5: <body>

 6: <?php

 7: function addFive(&$num)

 8: {

 9: $num += 5;

10: }

11: $orignum = 10;

12: addFive($orignum);

13: print ($orignum);

 105

14: ?>

15: </body>

16: </html>

On the whole, it makes more sense to add the ampersand to the function definition.

In this way, you can be sure that the function behaves consistently from call to call.

Summary

In this hour, you learned about functions and how to deploy them. You learned how

to define and pass arguments to a function. You learned how to use the global and

static statements. You learned how to pass references to functions and how to

create default values for function arguments.

Q&A

Q Apart from the global keyword, is there any way that a function can

access and change global variables?

A You can also access global variables anywhere in your scripts with a built-in

associative array called $GLOBALS. To access a global variable called $test within a

function, you could reference it as $GLOBALS[test]. You can learn more about

associative arrays in the next hour.

You can also change global variables from within a function if it has been passed in

by reference.

Q Can you include a function call within a string, as you can with a variable?

A No. You must call functions outside quotation marks.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

 106

Quiz

True or False: If a function doesn't require an argument, you can omit the

parentheses in the function call.

How do you return a value from a function?

What would the following code fragment print to the browser?

$number = 50;

function tenTimes()

 {

 $number = $number * 10;

 }

tenTimes();

print $number;

What would the following code fragment print to the browser?

$number = 50;

function tenTimes()

 {

 global $number;

 $number = $number * 10;

 }

tenTimes();

print $number;

What would the following code fragment print to the browser?

$number = 50;

function tenTimes($n)

 {

 $n = $n * 10;

 }

tenTimes($number);

print $number;

 107

What would the following code fragment print to the browser?

$number = 50;

function tenTimes(&$n)

 {

 $n = $n * 10;

 }

tenTimes($number);

print $number;

Activity

Create a function that accepts four string variables and returns a string that

contains an HTML table element, enclosing each of the variables in its own cell.

 108

Hour 7: Arrays

Overview

Arrays, and the tools to manipulate them, greatly enhance the scope and flexibility

of PHP4 scripts. After you've mastered arrays, you will be able to store and organize

complex data structures.

This hour introduces arrays and some of the functions that help you work with them.

In this hour, you will learn

What arrays are and how to create them

How to access data from and about arrays

How to access and sort the data contained in arrays

What Is an Array?
You already know that a variable is a "bucket" in which you can temporarily store a

value. By using variables, you can create a script that stores, processes, and

outputs different information every time it is run. Unfortunately, you can only store

one value at a time in a variable. Arrays are special variables that allow you to

overcome this limitation. An array allows you to store as many values as you want

in the same variable. Each value is indexed within the array by a number or a string.

If a variable is a bucket, you can think of an array as a filing cabinet— a single

container that can store many discrete items.

 NEW

TERM

An array is a list variable. That is, a variable that contains multiple

elements indexed by numbers or strings. It enables you to store,

order, and access many values under one name.

Of course, if you have five values to store, you could always define five variables. So,

why use an array rather than a variable? First, an array is flexible. It can store two

values or two hundred values without the need to define further variables. Second,

an array allows you to work easily with all its items. You can loop through each item

or pull one out at random. You can sort items numerically, alphabetically, or even

according to a system of your own.

Each item in an array is commonly referred to as an element. Each element can be

accessed directly via its index. An index to an array element can be either a number

or a string.

By default, array elements are indexed by number starting at zero. It's important to

remember, therefore, that the index of the last element of a numerically indexed

 109

array is always one less than the number of elements the array contains.

For example, Table 7.1 shows the elements in an array called users. Notice that the

third element has an index of 2.

Table 7.1: The Elements in the users Array

Index

Number

Value Which

Element?

0 Bert First

1 Sharon Second

2 Betty Third

3 Harry Fourth

Indexing arrays by string can be useful in cases where you need to store both names

and values.

PHP4 provides tools to access and manipulate arrays indexed by both name and

number. Some of these are covered in this hour, and others will be covered in Hour

16, "Working with Data."

Creating Arrays

By default, arrays are lists of values indexed by number. Values can be assigned to

an array in two ways: with the array() function or directly using the array identifier

[]. You'll meet both of these in the next two sections.

Defining Arrays with the array() Function

The array() function is useful when you want to assign multiple values to an array at

one time. Let's define an array called $users and assign four strings to it:

$users = array ("Bert", "Sharon", "Betty", "Harry");

You can now access the third element in the $user array by using the index "2":

print "$users[2]";

This would return the string "Sharon". The index of an array element is placed

between square brackets directly after the array name. You can use this notation

either to set or retrieve a value.

Remember that arrays are indexed from zero by default, so the index of any

element always is one less than the element's place in the list.

 110

Defining or Adding to Arrays with the Array Identifier

You can create a new array (or add to an existing one) by using the array identifier

in conjunction with the array name. The array identifier is a set of square brackets

with no index number or name inside it.

Let's re-create our $users array in this way:

$users[] = " Bert";

$users[] = " Sharon";

$users[] = " Betty";

$users[] = " Harry";

Notice that we didn't need to place any numbers between the square brackets. PHP4

automatically takes care of the index number, which saves you from having to work

out which is the next available slot.

We could have added numbers if we wanted, and the result would have been exactly

the same. It's not advisable to do this, though. Take a look at the following code:

$users[0] = " Bert";

$users[200] = "Sharon";

The array has only two elements, but the index of the final element is 200. PHP4 will

not initialize the intervening elements. This could lead to confusion when attempting

to access elements in the array.

In addition to creating arrays, you can use the array identifier to add new values

onto the end of an existing array. In the following code, we define an array with the

array() function and use the array identifier to add a new element:

$users = array ("Bert", " Sharon", "Betty", "Harry");

$users[] = "sally";

Associative Arrays

Numerically indexed arrays are useful for storing values in the order in which they

were added or according to a sort pattern. Sometimes, though, you need to access

elements in an array by name. An associative array is indexed with strings between

 111

the square brackets rather than numbers. Imagine an address book. Which would

be easier, indexing the "name" field as 4 or as "name"?

 NEW

TERM

Arrays indexed by strings are known as associative arrays. You

may also see them referred to as hashes.

Once again, you can define an associative array using either array() or the array

identifier [].

 Tip The division between an associative array and a numerically indexed

array is not absolute in PHP. They are not separate types as arrays and

hashes are in Perl. It is a good idea, nevertheless, to treat them

separately. Each demands different strategies for access and

manipulation.

Defining Associative Arrays with the array() Function

To define an associative array with the array() function, you must define both the

key and value for each element. The following code creates an associative array

called $character with four elements:

$character = array (

 name=>"bob",

 occupation=>"superhero",

 age=>30,

 "special power"=>"x-ray vision"

);

We can now access any of the fields of $character:

print $character[age];

The keys in an associative array are strings, but it isn't necessary to surround them

with quotation marks unless the key contains more than one word.

Directly Defining or Adding to an Associative Array

You can create or add a name/value pair to an associative array simply by assigning

a value to a named element. In the following, we re-create our $character array by

directly assigning a value to each key:

 112

$character[name] = "bob";

$character[occupation] = "superhero";

$character[age] = 30;

$character["special power"] = "x-ray vision";

Multidimensional Arrays
Until now, we've simply said that elements of arrays are values. In our $character

array, three of the elements held strings, and one held an integer. The reality is a

little more complex, however. In fact, an element of an array could be a value, an

object, or even another array. A multidimensional array is an array of arrays.

Imagine an array that stores an array in each of its elements. To access the third

element of the second element, you would have to use two indices:

$array[1][2]

 NEW

TERM

Arrays that contain arrays as their elements are known as

multidimensional arrays.

The fact that an array element can itself be an array enables you to create

sophisticated data structures relatively easily. 7.1 defines an array that has an

associative array as each of its elements.

Listing 7.1: Defining a Multidimensional Array

 1: <html>

 2: <head>

 3: <title>Listing 7.1</title>

 4: </head>

 5: <body>

 6: <?php

 7: $characters = array (

 8: array (name=>"bob",

 9: occupation=>"superhero",

10: age=>30,

11: specialty=>"x-ray vision"),

12: array (name=>"sally",

13: occupation=>"superhero",

14: age=>24,

15: specialty=>"superhuman strength"),

16: array (name=>"mary",

17: occupation=>"arch villain",

18: age=>63,

19: specialty=>"nanotechnology")

 113

20:);

21:

22: print $characters[0][occupation];

23: // prints "superhero"

24: ?>

25: </body>

26: </html>

Notice that we have nested array function calls within an array function call. At the

first level, we define an array. For each of its elements, we define an associative

array.

Accessing $user[2], therefore, gives us access to the third associative array in the

top-level array. We can then go ahead and access any of the associative array's

fields. $user[2][name] will be "mary", and $user[2][age] will be 63.

When this concept is clear, it will be easy to create complex combinations of

associative and numerically indexed arrays.

Accessing Arrays

So far, you've seen the ways in which you can create and add to arrays. In this

section, you will examine some of the tools that PHP4 provides to allow you to

acquire information about arrays and access their elements.

Getting the Size of an Array

You can access an element of an array by using its index:

print $user[4]

Because of the flexibility of arrays, however, you won't always know how many

elements a particular array contains. That's where the count() function comes into

play. count() returns the number of elements in an array. In the following code, we

define a numerically indexed array and use count() to access its last element:

 $users = array ("Bert", "Sharon", "Betty", "Harry");

print $users[count($users)− 1];

Notice that we subtract 1 from the value returned by count(). This is because count()

returns the number of elements in an array, not the index of the last element.

 114

Although arrays are indexed from zero by default, it is possible to change this. For

the sake of clarity and consistency, however, this is not usually advisable.

Looping Through an Array

There are many ways of looping through each element of an array. For these

examples, you'll use PHP4's powerful foreach statement. You will examine some

other methods inHour 16.

 Note The foreach statement was introduced with PHP4.

In the context of numerically indexed arrays, you would use a foreach statement

like this:

foreach($array as $temp)

 {

 //...

 }

where $array is the array you want to loop through, and $temp is a variable in which

you will temporarily store each element.

In the following code, we define a numerically indexed array and use foreach to

access each of its elements in turn:

$users = array ("Bert", "Sharon", "Betty", "Harry");

foreach ($users as $val)

 {

 print "$val
";

 }

You can see the output from this code fragment in Figure 7.1.

 115

Figure 7.1: Looping through an array.

The value of each element is temporarily placed in the variable $val, which we then

print to the browser. If you are moving to PHP4 from Perl, be aware of a significant

difference in the behavior of foreach. Changing the value of the temporary variable

in a Perl foreach loop changes the corresponding element in the array. Changing the

temporary variable in the preceding example would have no effect on the $users

array. You will look at a way of using foreach to change the values of a numerically

indexed array inHour 16

Looping Through an Associative Array

To access both the keys and values of an associative array, you need to alter the use

of foreach slightly.

In the context of associative arrays, you would use a foreach statement like this:

foreach($array as $key=>$value)

 {

 //...

 }

where $array is the array we are looping through, $key is a variable that temporarily

holds each key, and $value is a variable that temporarily holds each value.

Listing 7.2 creates an associative array and accesses each key and value in turn.

Listing 7.2: Looping Through an Associative Array with foreach

 1: <html>

 2: <head>

 116

 3: <title>Listing 7.2</title>

 4: </head>

 5: <body>

 6: <?php

 7: $character = array (

 8: name=>"bob",

 9: occupation=>"superhero",

10: age=>30,

11: "special power"=>"x-ray vision"

12:);

13: foreach ($character as $key=>$val)

14: {

15: print "$key = $val
";

16: }

17:

18: ?>

19: </body>

20: </html>

You can see the output from Listing 7.2 in Figure 7.2.

Outputting a Multidimensional Array

You can now combine these techniques to output the multidimensional array

created in Listing 7.1. Listing 7.3 defines a similar array and uses foreach to loop

through each of its elements.

 117

Figure 7.2: Looping through an associative array.

Listing 7.3: Looping Through a Multidimensional Array

 1: <html>

 2: <head>

 3: <title>Listing 7.3</title>

 4: </head>

 5: <body>

 6: <?php

 7: $characters = array (

 8: array (name=>"bob",

 9: occupation=>"superhero",

10: age=>30,

11: specialty=>"x-ray vision"),

12: array (name=>"sally",

13: occupation=>"superhero",

14: age=>24,

15: specialty=>"superhuman strength"),

16: array (name=>"mary",

17: occupation=>"arch villain",

18: age=>63,

19: specialty=>"nanotechnology")

20:);

21:

 118

22: foreach ($characters as $val)

23: {

24: foreach ($val as $key=>$final_val)

25: {

26: print "$key: $final_val
";

27: }

28: print "
";

29: }

30: ?>

31: </body>

32: </html>

You can see the output from Listing 7.3 in Figure 7.3. We create two foreach loops.

The outer loop accesses each element in the numerically indexed array $users,

placing each one in $val. Because $val itself then contains an associative array, we

can loop through this, outputting each of its elements (temporarily stored in $key

and $final_val) to the browser.

Figure 7.3: Looping through a multidimensional array.

For this technique to work as expected, we need to make sure in advance that $val

will always contain an array. To make this code a little more robust, we could use the

function is_array() to test $val. is_array() accepts a variable, returning true if the

variable is an array, or false otherwise.

Manipulating Arrays

 119

You can now populate arrays and access their elements, but PHP4 has functions to

help you do much more than that with arrays. If you're used to Perl, you'll find some

of these eerily familiar!

Joining Two Arrays with array_merge()

array_merge() accepts two or more arrays and returns a merged array combining

all their elements. In the following example, we create two arrays, joining the

second to the first, and loop through the resultant third array:

$first = array("a", "b", "c");

$second = array(1,2,3);

$third = array_merge($first, $second);

foreach ($third as $val)

 {

 print "$val
";

 }

The $third array contains copies of all the elements of both the $first and $second

arrays. The foreach statement prints this combined array ('a', 'b', 'c', 1, 2, 3) to the

browser with a
 tag between each element. Remember that the arrays passed

to array_merge() are not themselves transformed.

 Note The array_merge() function was introduced with PHP4.

Adding Multiple Variables to an Array with array_push()

array_push() accepts an array and any number of further parameters, each of

which is added to the array. Note that the array_push() function is unlike

array_merge() in that the array passed in as the first argument is transformed.

array_push() returns the total number of elements in the array. Let's create an

array and add some more values to it:

$first = array("a", "b", "c");

$total = array_push($first, 1, 2, 3);

print "There are $total elements in \$first<P>";

 120

foreach ($first as $val)

 {

 print "$val
";

 }

Because array_push() returns the total number of elements in the array it

transforms, we are able to store this value (6) in a variable and print it to the

browser. The $first array now contains its original elements as well the three

integers we passed to the array_push() function, all of these are printed to the

browser within the foreach statement.

Notice that we used a backslash character when we printed the string "\$first". If

you use a dollar sign followed by numbers and letters within a string, PHP will

attempt to insert the value of a variable by that name. In the example above we

wished to print the string '$first' rather than the value of the $first variable. To print

the special character '$', therefore, we must precede it with a backslash. PHP will

now print the character instead of interpreting it. This process is often referred to as

"escaping" a character.

 Caution Perl users beware! If you're used to working with Perl's push(), you

should note that if you pass a second array variable to

array_push() it will be added as a single element, creating a

multidimensional array. If you want to combine two arrays, use

array_merge().

Removing the First Element of an Array with array_shift()

array_shift() removes and returns the first element of an array passed to it as an

argument. In the following example, we use array_shift() in conjunction with a

while loop. We test the value returned from count() to check whether the array still

contains elements:

<?php

$an_array = array("a", "b", "c");

while (count($an_array))

 {

 $val = array_shift($an_array);

 print "$val
";

 121

 print "there are ".count($an_array)." elements in \$an_array
";

 }

?>

You can see the output from this fragment of code in Figure 7.4.

Figure 7.4: Using array_shift() to remove and print every element in an array.

array_shift() is useful when you need to create a queue and act on it until the queue

is empty.

 Note The array_shift() function was added to the language with the advent

of PHP4.

Slicing Arrays with array_slice()

array_slice() allows you to extract a chunk of an array. It accepts an array as an

argument, a starting position (offset), and an (optional) length. If the length is

omitted, array_slice() generously assumes that you want all elements from the

starting position onward returned. array_slice() does not alter the array you pass to

it. It returns a new array containing the elements you have requested.

In the following example, we create an array and extract a new three-element array

from it:

$first = array("a", "b", "c", "d", "e", "f");

$second = array_slice($first, 2, 3);

foreach ($second as $var)

 {

 print "$var
";

 122

 }

This will print the elements 'c', 'd', and 'e', separating each by a
 tag. Notice

that the offset is inclusive if we think of it as the index number of the first element

we are requesting. In other words, the first element of the $second array is

equivalent to $first[2].

If we pass array_slice() an offset argument that is less than zero, the returned slice

will begin that number of elements from the end of the given array.

If we pass array_slice() a length argument that is less than zero, the returned slice

will contain all elements from the offset position to that number of elements from

the end of the given array.

 Note Once again, array_slice() was added to PHP with PHP4.

Sorting Arrays

Sorting is perhaps the greatest magic you can perform on an array. Thanks to the

functions that PHP4 offers to achieve just this, you can truly bring order from chaos.

This section introduces some functions that allow you to sort both numerically

indexed and associative arrays.

Sorting Numerically Indexed Arrays with sort()

sort() accepts an array as its argument and sorts it either alphabetically if any

strings are present or numerically if all elements are numbers. The function doesn't

return any data, transforming the array you pass it. Note that it differs from Perl's

sort() function in this respect. The following fragment of code initializes an array of

single character strings, sorts it, and outputs the transformed array:

$an_array = array("x","a","f","c");

sort($an_array);

foreach ($an_array as $var)

 {

 print "$var
";

 }

 Caution Don't pass an associative array to sort(). You will find that the

values are sorted as expected but that your keys have been

 123

lost— replaced by numerical indices that follow the sort order.

You can reverse sort a numerically indexed array by using rsort() in exactly the

same way as sort().

Sorting an Associative Array by Value with asort()

asort() accepts an associative array and sorts its values just as sort() does.

However, it preserves the array's keys:

$first = array("first"=>5,"second"=>2,"third"=>1);

asort($first);

foreach ($first as $key => $val)

 {

 print "$key = $val
";

 }

You can see the output from this fragment of code in Figure 7.5.

Figure 7.5: Sorting an associative array by its values with asort().

You can reverse sort an associative array by value with arsort().

Sorting an Associative Array by Key with ksort()

ksort() accepts an associative array and sorts its keys. Once again, the array you

pass it will be transformed and nothing will be returned:

$first = array("x"=>5,"a"=>2,"f"=>1);

 124

ksort($first);

foreach ($first as $key => $val)

 {

 print "$key = $val
";

 }

You can see the output from this fragment of code in Figure 7.6.

You can reverse sort an associative array by key with krsort().

Figure 7.6: Sorting an associative array by its keys with ksort().

Summary

In this hour, you learned about arrays and some of the many tools that PHP4

provides to work with them. You should now be able to create both numerically

indexed and associative arrays, and output data from them using a foreach loop.

You should be able to combine arrays to create multidimensional arrays and loop

through the information they contain. You learned how to manipulate arrays by

adding or removing multiple elements. Finally, you learned some of the techniques

that PHP4 makes available to sort arrays.

Q&A
Q If the foreach statement was introduced with PHP4, how did

programmers using PHP3 iterate through arrays?

A The PHP3 technique for looping through an array involved a function called each(),

which was used in conjunction with a while statement. You can read about this

technique inHour 16.

Q Are there any functions for manipulating arrays that we have not

 125

covered here?

A PHP4 supports many array functions. You can read about some more of these in

Hour 16 and find them all in the official PHP manual at

http://www.php.net/manual/ref.array.php.

Q I can discover the number of elements in an array, so should I use a for

statement to loop through an array?

A You should be cautious of this technique. You cannot be absolutely sure that the

array you are reading is indexed by consecutively numbered keys.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

What function can you use to define an array?

What is the index number of the last element of the array defined below?

$users = array("Harry", "Bob", "Sandy");

Without using a function, what would be the easiest way of adding the element

"Susan" to the $users array defined previously?

Which function could you use to add the string "Susan" to the $users array?

How would you find out the number of elements in an array?

In PHP4, what is the simplest way of looping through an array?

What function would you use to join two arrays?

How would you sort an associative array by its keys?

Activities

Create a multidimensional array of movies organized by genre. This should take

the form of an associative array with genres as keys ("SF", "Action", "Romance",

and so on). Each of this associative array's elements should be an array

containing movie names ("2001", "Alien", "Terminator", and so on).

Loop through the array you created in Activity 1, outputting each genre and its

associated movies to the browser.

 126

Hour 8: Objects

Overview

Object-oriented programming is dangerous. It changes the way you think about

coding, and once the concepts have a hold on you, they don't let go. PHP, like Perl

before it, has progressively incorporated more object-oriented aspects into its

syntax and structure. With the advent of PHP4, it becomes possible to use

object-oriented code at the heart of your projects.

Throughout this hour, you'll take a tour of PHP4's object-oriented features and apply

them to some real-world code. In this hour, you will learn

What objects and classes are

How to create classes and instantiate objects

How to create and access properties and methods

How to create classes that inherit functionality from others

Some of the reasons why object-oriented programming can help you to organize

your projects

What Is an Object?
An object is an enclosed bundle of variables and functions forged from a special

template called a class. Objects hide a lot of their inner workings away from the

code that uses them, providing instead easy interfaces through which you can send

them orders and they can return information. These interfaces are special functions

called methods. All the methods of an object have access to special variables called

properties.

By defining a class, you lay down a set of characteristics. By creating objects of that

type, you create entities that share these characteristics but might initialize them as

different values. You might create an automobile class, for example. This class

would have a color characteristic. All automobile objects would share the

characteristic of color, but some would initialize it to "blue," others to "green," and

so on.

A class is a collection of special functions called methods and special variables called

properties. You can declare a class with the class keyword. Classes are the

templates from which objects are created.

 NEW Existing in memory rather than as code, an object is an instance of a

 127

TERM class. That is, an object is the working embodiment of the

functionality laid down in a class. An object is instantiated with the

new statement in conjunction with the name of the class of which it

is to be a member. When an object is instantiated, you can access all

its properties and all its methods.

Perhaps the greatest benefit of object-oriented code is its reusability. Because the

classes used to create objects are self-enclosed, they can be easily pulled from one

project and used in another. Additionally, it is possible to create child classes that

inherit and override the characteristics of their parents. This technique can allow

you to create progressively more complex and specialized objects that can draw on

base functionality while adding more of their own.

Perhaps the best way to explain object-oriented programming is to do it.

Creating an Object

To create an object, you must first design the template from which it can be

instantiated. This template is known as a class, and in PHP4 it must be declared with

the class keyword:

class first_class

 {

 // a very minimal class

 }

The first_class class is the basis from which you can instantiate any number of

first_class objects. To create an instance of an object, you must use the new

statement:

$obj1 = new first_class();

$obj2 = new first_class();

print "\$obj1 is a ".gettype($obj1)."
";

print "\$obj2 is a ".gettype($obj2)."
";

You can test that $obj1 and $obj2 contain objects with PHP's gettype() function.

gettype() accepts any variable and returns a string that should tell you what you are

dealing with. In a loosely typed language like PHP, gettype() is useful when

 128

checking arguments sent to functions. In the previous code fragment, gettype()

returns the string "object", which is then written to the browser.

So, you have confirmed that you have created two objects. Of course they're not

very useful yet, but they help to make an important point. You can think of a class

as a mold with which you can press as many objects as you want. Let's add some

more features to the class to make your objects a little more interesting.

Object Properties
Objects have access to special variables called properties. These can be declared

anywhere within the body of your class, but for the sake of clarity should be defined

at the top. A property can be a value, an array, or even another object:

class first_class

 {

 var $name = "harry";

 }

Notice that we declared our variable with the var keyword. This is essential in the

context of a class, and you will be rewarded with a parse error if you forget it. Now

any first_class object that is created will contain a property called name with the

value of "harry". You can access this property from outside the object and even

change it:

class first_class

 {

 var $name = "harry";

 }

$obj1 = new first_class();

$obj2 = new first_class();

$obj1->name = "bob";

print "$obj1->name
";

print "$obj2->name
";

The -> operator allows you to access or change the properties of an object.

Although $obj1 and $obj2 were born with the name of "harry", we have helped

$obj2 to change its mind by assigning the string "bob" to its name property, before

using the -> operator once again to print each object's name property to the screen.

 Caution Object-oriented languages, such as Java, demand that the

programmer set a level of privacy for all properties and methods. This

means that access can be limited to only those features needed to use

the object effectively, and properties meant only for internal use can

 129

be safely tucked away. PHP has no such protection. You can access all

the fields of an object, which can cause problems if a property isn't

meant to be changed.

You can use objects to store information, but that makes them little more

interesting than associative arrays. In the next section, you will look at object

methods, and your objects can get a little more active.

Object Methods
A method is a function defined within a class. Every object instantiated from the

class will have the method's functionality. Listing 8.1 adds a method to the

first_class class.

Listing 8.1: A Class with a Method

 1: <html>

 2: <head>

 3: <title>Listing 8.1</title>

 4: <body>

 5: <?php

 6: class first_class

 7: {

 8: var $name;

 9: function sayHello()

10: {

11: print "hello";

12: }

13: }

14:

15: $obj1 = new first_class();

16: $obj1->sayHello();

17: // outputs "hello"

18: ?>

19: </body>

20: </html>

As you can see, a method looks and behaves much like a normal function. A method

is always defined within a class, however. You can call an object method using the

-> operator. Importantly, methods have access to the class's member variables.

You've already seen how to access a property from outside an object, but how does

an object refer to itself? Find out in Listing 8.2.

 130

Listing 8.2: Accessing a Property from Within a Method

 1: <html>

 2: <head>

 3: <title>Listing 8.2</title>

 4: <body>

 5: <?php

 6: class first_class

 7: {

 8: var $name="harry";

 9: function sayHello()

10: {

11: print "hello my name is $this->name
";

12: }

13: }

14:

15: $obj1 = new first_class();

16: $obj1->sayHello();

17: // outputs "hello my name is harry"

18: ?>

19: </body>

20: </html>

A class uses the special variable $this to refer to the currently instantiated object.

You can think of it as a personal pronoun. Although you refer to an object by the

handle you have assigned it to ($obj1, for example), an object must refer to itself by

means of the $this variable. Combining the $this variable and the -> operator, you

can access any property or method in a class from within the class itself.

Imagine that you want to assign a different value to the name property to every

object of type first_class you create. You could do this by manually resetting the

name property as you did earlier, or you could create a method to do it for you, as

shown in Listing 8.3.

Listing 8.3: Changing the Value of a Property from Within a Method

 1: <html>

 2: <head>

 3: <title>Listing 8.3</title>

 4: </head>

 5: <body>

 6: <?php

 131

 7: class first_class

 8: {

 9: var $name="harry";

10: function setName($n)

11: {

12: $this->name = $n;

13: }

14: function sayHello()

15: {

16: print "hello my name is $this->name
";

17: }

18: }

19:

20:

21: $obj1 = new first_class();

22: $obj1->setName("william");

23: $obj1->sayHello();

24: // outputs "hello my name is william"

25: ?>

26: </body>

27: </html>

The name property of the object begins as "harry", but after the object's setName()

method is called, it is changed to "william". Notice how the object is capable of

adjusting its own property. Notice also that you can pass arguments to the method

in exactly the same way as you would to a function.

We're still missing a trick here, however. If you create a method with exactly the

same name as the first_class class, it will automatically be called when a new object

is instantiated. In this way, you can give your objects arguments to process at the

moment you instantiate them. Objects can run code to initialize themselves based

on these arguments or other factors. These special methods are called constructors.

Listing 8.4 adds a constructor to the first_class class.

Listing 8.4: A Class with a Constructor

 1: <html>

 2: <head>

 3: <title>Listing 8.4</title>

 4: </head>

 5: <body>

 132

 6: <?php

 7: class first_class

 8: {

 9: var $name;

10: function first_class($n="anon")

11: {

12: $this->name = $n;

13: }

14: function sayHello()

15: {

16: print "hello my name is $this->name
";

17: }

18: }

19: $obj1 = new first_class("bob");

20: $obj2 = new first_class("harry");

21: $obj1->sayHello();

22: // outputs "hello my name is bob"

23: $obj2->sayHello();

24: // outputs "hello my name is harry"

25: ?>

26: </body>

27: </html>

The first_class() constructor method is automatically called when we instantiate a

first_class object. We set up a default so that the string "anon" is assigned to the

parameter if we don't include an argument when we create our object.

An Example

Let's bring these techniques together to create an example that might be a little

more useful. We will create a class that can maintain a table of fields, organized in

named columns. This data should be built up on a row-by-row basis, and crude a

method should be included so that the data can be written to the browser. Neatly

formatting the data is not necessary at this stage.

 133

Defining the Class's Properties

First, we must decide what properties we need to store the data in. We will keep the

column names in an array and the rows in a multidimensional array. We'll also store

an integer so that we can easily keep track of the number of columns we're dealing

with:

class Table

 {

 var $table_array = array();

 var $headers = array();

 var $cols;

 }

Creating a Constructor

We need to get the names of the columns that we'll be working with straight away.

We can do this in the constructor by asking for an array of strings as a parameter.

Armed with this information, we can calculate the number of columns and assign the

result to the cols property:

function Table($headers)

 {

 $this->headers = $headers;

 $this->cols = count ($headers);

 }

Assuming that the correct information is provided when the new Table object is

created, we will know right away the number of columns we'll be storing and the

name of each column. Because this information has been stored in properties, it will

be available to all the object's methods.

 134

The addRow() Method

The Table object accepts each row of data in the form of an array, assuming, of

course, that this information is provided in the same order as that of the column

names:

function addRow($row)

 {

 if (count ($row) != $this->cols)

 return false;

 array_push($this->table_array, $row);

 return true;

 }

The addRow() method expects an array, which is stored in a parameter variable

called $row. We have stored the number of columns that the object expects to

handle in the $cols property. We can check that the $row array parameter contains

the right number of elements using the count() function. If it doesn't, a boolean

bfalse is returned.

We then use PHP4's array_push() function to add the row array to the table_array

property. array_push() accepts two arguments— an array to add to and the value to

push onto it. If the second argument is itself an array, it will be added as a single

element of the first array, creating a multidimensional array. In this way, we can

build up an array of arrays.

The addRowAssocArray() Method

The addRow() method is fine as long as the elements of the array passed to it are

ordered correctly. The addRowAssocArray() method allows for a little more

flexibility. It expects an associative array. The keys for each value should match one

of the header names we are storing in our headers property, or they'll be ignored:

function addRowAssocArray($row_assoc)

 {

 $row = array();

 135

 foreach ($this->headers as $header)

 {

 if (! isset($row_assoc[$header]))

 $row_assoc[$header] = "";

 $row[] = $row_assoc[$header];

 }

 array_push($this->table_array, $row);

 return true;

 }

The associative array passed to addRowAssocArray() is stored in the parameter

variable $row_assoc. We create an empty array called $row to store the values that

we will eventually add to the table_array property. We loop through the headers

array to check that a value corresponding to each string exists in the $row_assoc

array. To do this, we use the PHP4 function isset(), which expects any variable as its

argument. It returns true if the variable passed to it has been set and false

otherwise. We pass isset() the element in the $row_assoc array whose key is the

current value in the headers property we are looping through. If no element indexed

by that string exists in $row_assoc, we go ahead and create one with the value of an

empty string. We can then continue to build up our $row array, adding to it the

element in $row_assoc indexed by the current string in the headers array. By the

time we have finished looping through the headers array property, $row contains an

ordered copy of the values passed to us in $row_assoc, with empty strings in place

of any omissions.

We now have two simple methods to allow the addition of rows of data to a Table

object's table_array property. All we need now is a way of outputting the data.

The output() Method

The output() method writes both the headers and the table_array array properties

to the browser. This method is provided mainly for the purpose of debugging. You'll

see a more satisfactory solution later in the hour.

function output()

 {

 print "<pre>";

 136

 foreach ($this->headers as $header)

 print "$header ";

 print "\n";

 foreach ($this->table_array as $y)

 {

 foreach ($y as $xcell)

 print "$xcell ";

 print "\n";

 }

 print "</pre>";

 }

This code fragment should be fairly self-explanatory. We loop first through the

headers array property, writing each element to the screen. We then do the same

for the table_array property. Because the table_array property is a two-dimensional

array, each of its elements is itself an array that must be looped through within the

main loop.

Bringing It All Together

Listing 8.5 includes the entire Table class, as well the code that instantiates a Table

object and calls each of its methods.

Listing 8.5: The Table Class

 1: <html>

 2: <head>

 3: <title>Listing 8.5</title>

 4: </head>

 5: <body>

 6: <?php

 7: class Table

 8: {

 9: var $table_array = array();

10: var $headers = array();

 137

11: var $cols;

12: function Table($headers)

13: {

14: $this->headers = $headers;

15: $this->cols = count ($headers);

16: }

17:

18: function addRow($row)

19: {

20: if (count ($row) != $this->cols)

21: return false;

22: array_push($this->table_array, $row);

23: return true;

24: }

25:

26: function addRowAssocArray($row_assoc)

27: {

28: $row = array();

29: foreach ($this->headers as $header)

30: {

31: if (! isset($row_assoc[$header]))

32: $row_assoc[$header] = "";

33: $row[] = $row_assoc[$header];

34: }

35: array_push($this->table_array, $row);

36: return true;

37: }

38:

39: function output()

40: {

 138

41: print "<pre>";

42: foreach ($this->headers as $header)

43: print "$header ";

44: print "\n";

45: foreach ($this->table_array as $y)

46: {

47: foreach ($y as $xcell)

48: print "$xcell ";

49: print "\n";

50: }

51: print "</pre>";

52: }

53: }

54:

55: $test = new table(array("a","b","c"));

56: $test->addRow(array(1,2,3));

57: $test->addRow(array(4,5,6));

58: $test->addRowAssocArray(array (b=>0, a=>6, c=>3));

59: $test->output();

60: ?>

61: </body>

62: </html>

You can see the output of Listing 8.5 in Figure 8.1.

 139

Figure 8.1: The Table object in action.

The output looks neat as long as the individual strings are the same length. This will

change if we vary the length of any of the elements.

What's Missing?

Although this class will do a job effectively for us, with more time and space, we

might have added some features and safeguards.

Because PHP is loosely typed, it is our responsibility to make sure that parameters

passed to our methods are the type we are expecting. For this purpose, we can use

the data functions covered in Hour 16, "Working with Data." We might also want to

make the Table object a little more flexible, adding methods to sort the rows

according to the values in any column before we output, for example.

Why a Class?

So, what's better about using an object to achieve this task than simply

manipulating arrays ourselves as and when we need to? It certainly isn't efficiency.

We've added overheads to the process of storing and retrieving information.

First, this code is reusable. It has a clear purpose— to represent data in a certain way,

and we can now slot it into any project that needs data stored and output in this

way.

Second, a Table object is active. We can ask it to output its data without bothering

to write code to loop through its table_array property.

 140

Third, we've built an interface to the object's functionality. If we decide later to

optimize the code in the class, we can do so without disturbing the rest of the project,

as long as the same methods remain, expecting the same arguments and returning

the same data types.

Finally, we can build classes that inherit, extend, and override its functionality. This

makes object-oriented code truly cool.

Inheritance

To create a class that inherits functionality from a parent class, we need to alter our

class declaration slightly. Listing 8.6 returns to our simple example.

Listing 8.6: Creating a Class That Inherits from Another

 1: <html>

 2: <head>

 3: <title>Listing 8.6</title>

 4: </head>

 5: <body>

 6: <?php

 7: class first_class

 8: {

 9: var $name = "harry";

10: function first_class($n)

11: {

12: $this->name = $n;

13: }

14: function sayHello()

15: {

16: print "Hello my name is $this->name
";

17: }

18: }

19:

20: class second_class extends first_class

 141

21: {

22:

23: }

24:

25: $test = new second_class("son of harry");

26: $test->sayHello();

27: // outputs "Hello my name is son of harry"

28: ?>

29: </body>

30: </html>

In addition to the simple first_class class, we have created an even more basic

second_class class. Notice the extends clause in the class declaration. This means

that a second_class object inherits all the functionality laid down in the first_class

class. Any second_class object will have a sayHello() method and a name property

just as any first_class object would.

If that's not enough, there's even more magic to be found in Listing 8.6. Notice that

we didn't define a constructor method for the second_class class. So, how was the

name property changed from the default, "harry" to the value passed to the

second_class class, "son of harry"? Because we didn't provide a constructor, the

first_class class's constructor was automatically called.

 Note If a class extending another doesn't contain a constructor method, the

parent class's constructor method will be called automatically when a

child object is created. This feature is new in PHP4.

Overriding the Method of a Parent Class

The second_class class currently creates objects that behave in exactly the same

way as first_class objects. In object-oriented code, child classes can override the

methods of their parents, allowing objects instantiated from them to behave

differently, while otherwise retaining much of the same functionality. Listing 8.7

gives the second_class class its own sayHello() method.

Listing 8.7: The Method of a Child Class Overriding That of Its Parent

 1: <html>

 142

 2: <head>

 3: <title>Listing 8.7</title>

 4: </head>

 5: <body>

 6: <?php

 7: class first_class

 8: {

 9: var $name = "harry";

10: function first_class($n)

11: {

12: $this->name = $n;

13: }

14: function sayHello()

15: {

16: print "Hello my name is $this->name
";

17: }

18: }

19:

20: class second_class extends first_class

21: {

22: function sayHello()

23: {

24: print "I'm not going to tell you my name
";

25: }

26: }

27:

28: $test = new second_class("son of harry");

29: $test->sayHello();

30: // outputs "I'm not going to tell you my name"

31: ?>

 143

32: </body>

33: </html>

The sayHello() method in the second_class class is called in preference to that in the

parent class.

Calling an Overridden Method

Occasionally, you will want the functionality of a parent class's method, as well as

the benefit of your own additions. Object-oriented programming allows you to have

your cake and eat it too. In Listing 8.8, the second_class's sayHello() method calls

the method in the first_class class that it has overridden.

Listing 8.8: Calling an Overridden Method

 1: <html>

 2: <head>

 3: <title>Listing 8.8</title>

 4: </head>

 5: <body>

 6: <?php

 7: class first_class

 8: {

 9: var $name = "harry";

10: function first_class($n)

11: {

12: $this->name = $n;

13: }

14: function sayHello()

15: {

16: print "Hello my name is $this->name
";

17: }

18: }

19:

 144

20: class second_class extends first_class

21: {

22: function sayHello()

23: {

24: print "I'm not going to tell you my name -- ";

25: first_class::sayHello();

26: }

27: }

28:

29: $test = new second_class("son of harry");

30: $test->sayHello();

31: // outputs "I'm not going to tell you my name -- Hello my name is son of harry"

32: ?>

33: </body>

34: </html>

By using the syntax

parentclassname::methodname()

we can call any method that we have overridden. This syntax is new to PHP4— the

same code will result in a parse error with PHP3.

Inheritance: An Example

You've seen how one class can inherit, override, and extend the functionality of

another. Now we can use some of these techniques to create a class that inherits

from the Table class created in Listing 8.5. The new class will be called HTMLTable

and will be designed to overcome the deficiencies of Table's output() method.

Defining HTMLTable's Properties

HTMLTable will format the data that it stores courtesy of Table's functionality using

a standard HTML table. For this example, we will allow an HTMLTable's user to

 145

change the CELLPADDING argument of the TABLE element and the BGCOLOR

argument of the TD element. A real-world example should allow for many more

changes than this.

class HTMLTable extends Table

 {

 var $bgcolor;

 var $cellpadding = "2";

 }

We have defined a new class and established that it will inherit from Table by using

the extends clause. We create two properties, bgcolor and cellpadding, giving

cellpadding a default value of 2.

Creating the Constructor

You have already seen that a parent class's constructor is called automatically if you

don't define a constructor for a child class. In this case, however, we want to do

more work with our constructor than has already been written for the Table class:

function HTMLTable($headers, $bg="#ffffff")

 {

 Table::Table($headers);

 $this->bgcolor=$bg;

 }

The HTMLTable constructor accepts an array of column names and a string. The

string becomes our bgcolor property, and we give it a default value, making it an

optional argument. We call the Table class's constructor, passing the $header array

to it. Laziness is a virtue in programming, so we let the Table class's constructor do

its thing and worry no more about it. We initialize the HTMLObject's bgcolor

property.

 Note If a child class is given a constructor method, the parent's constructor

is no longer called implicitly. The child class's constructor must

explicitly call that of its parent.

 146

The setCellpadding() Method

A child class can of course create its own entirely new methods. setCellpadding()

allows a user to change the cellpadding property from the default. Of course, it

would be perfectly possible to set the cellpadding property directly from outside the

object, but this is not good practice on the whole. As a rule of thumb, it is best to

create methods that will change properties on behalf of an object's user. In a more

complex version of this class, the setCellpadding() method might need to change

other properties to reflect the change made to the cellpadding property.

Unfortunately, there is no neat way of enforcing privacy in PHP4.

function setCellpadding($padding)

 {

 $this->cellpadding = $padding;

 }

The Output() Method

The Output() method completely overrides the equivalent method in the Table class.

It outputs data according to exactly the same logic as its parent, adding HTML table

formatting:

function output()

 {

 print "<table cellpadding=\"$this->cellpadding\" border=1>";

 foreach ($this->headers as $header)

 print "<td bgcolor=\"$this->bgcolor\">$header</td>";

 foreach ($this->table_array as $row=>$cells)

 {

 print "<tr>";

 foreach ($cells as $cell)

 print "<td bgcolor=\"$this->bgcolor\">$cell</td>";

 print "</tr>";

 }

 147

 print "</table>";

 }

The output() method should be fairly clear if you understood the Table class's

version. We loop through both the header and table_array arrays, outputting each

to the browser. Crucially, though, we format the data into a table, using the

cellpadding and bgcolor properties to change the spacing and color of the table that

the end user sees.

The Table and HTMLTable Classes in Their Entirety

Listing 8.9 brings the entire Table and HTMLTable examples together. We also

instantiate an HTMLTable object, change its cellpadding property, add some data,

and call its ouptut() method. In a real-world example, we would probably get our

row data directly from a database.

Listing 8.9: The Table and HTMLTable Classes

 1: <html>

 2: <head>

 3: <title>testing objects</title>

 4: </head>

 5: <body>

 6: <?php>

 7: class Table

 8: {

 9: var $table_array = array();

10: var $headers = array();

11: var $cols;

12: function Table($headers)

13: {

14: $this->headers = $headers;

15: $this->cols = count ($headers);

16: }

17:

 148

18: function addRow($row)

19: {

20: if (count ($row) != $this->cols)

21: return false;

22: array_push($this->table_array, $row);

23: return true;

24: }

25:

26: function addRowAssocArray($row_assoc)

27: {

28: if (count ($row_assoc) != $this->cols)

29: return false;

30: $row = array();

31: foreach ($this->headers as $header)

32: {

33: if (! isset($row_assoc[$header]))

34: $row_assoc[$header] = " ";

35: $row[] = $row_assoc[$header];

36: }

37: array_push($this->table_array, $row) ;

38: }

39:

40: function output()

41: {

42: print "<pre>";

43: foreach ($this->headers as $header)

44: print "$header ";

45: print "\n";

46: foreach ($this->table_array as $y)

47: {

 149

48: foreach ($y as $xcell)

49: print "$xcell ";

50: print "\n";

51: }

52: print "</pre>";

53: }

54: }

55:

56: class HTMLTable extends Table

57: {

58: var $bgcolor;

59: var $cellpadding = "2";

60: function HTMLTable($headers, $bg="#ffffff")

61: {

62: Table::Table($headers);

63: $this->bgcolor=$bg;

64: }

65: function setCellpadding($padding)

66: {

67: $this->cellpadding = $padding;

68: }

69: function output()

70: {

71: print "<table cellpadding=\"$this->cellpadding\" border=1>";

72: foreach ($this->headers as $header)

73: print "<td bgcolor=\"$this->bgcolor\">$header</td>";

74: foreach ($this->table_array as $row=>$cells)

75: {

76: print "<tr>";

77: foreach ($cells as $cell)

 150

78: print "<td bgcolor=\"$this->bgcolor\">$cell</td>";

79: print "</tr>";

80: }

81: print "</table>";

82: }

83: }

84: $test = new HTMLTable(array("a","b","c"), "#00FF00");

85: $test->setCellpadding(7);

86: $test->addRow(array(1,2,3));

87: $test->addRow(array(4,5,6));

88: $test->addRowAssocArray(array (b=>0, a=>6, c=>3));

89: $test->output();

90: ?>

91: </body>

92: </html>

You can see the output from Listing 8.9 in Figure 8.2.

Figure 8.2: The HTMLTable object in action.

Why Use Inheritance?

So, why did we split Table from HTMLTable? Surely we could have saved ourselves

time and space by building HTML table capabilities into the Table class? The answer

lies in flexibility.

 151

Imagine that a client gave you the brief to create a class that can maintain a table

of fields, organized in named columns. If you had built a monolithic class that

collected and stored the data, customized HTML, and output the result to the

browser, all would seem to be well.

If the same client came back to you and asked whether the code could be adapted

additionally to write neatly formatted data to a text file, you could probably add

some more methods and properties to make it do this too.

A week or so later, the client realizes that she would like the code to be able to send

data out as an email, and while you're at it, the company intranet uses a subset of

XML; could this be accommodated too? At this stage, including all the functionality

in a single class is beginning to look a little unwieldy, and you would already be

considering a complete rewrite of the code.

Let's try this scenario out with our Table and HTMLTable examples. We have already

substantially separated formatting the data from acquiring and preparing it. When

our client asks that the code should be capable of outputting to a file, we only need

to create a new class that inherits from Table. Let's call it FileTable. We need make

no changes at all to our existing code. The same would be true for MailTable and

XMLTable. Figure 8.3 illustrates the relationship between these classes.

Figure 8.3: The relationship between the Table class and multiple child classes.

What's more, we know that any object that inherits from Table will have an output()

method, so we can group a bunch of them into an array. When we're ready, we can

loop through the lot, calling output() without worrying about the mechanics. From a

single array of Table-derived objects, we can write emails, HTML, XML, or plain text,

simply by repeatedly calling output()!

Summary

It is not possible to introduce you to all the aspects of object-oriented programming

in one short hour, but I hope I have introduced you to some of the possibilities.

The extent to which you use objects and classes in your projects is a matter of

choice. It is likely that heavily object-oriented projects will be somewhat more

 152

resource-intensive at runtime than more traditional code. However, effective

deployment of object-oriented techniques can significantly improve the flexibility

and organization of your code.

Throughout this hour, you learned how to create classes and instantiate objects

from them. You learned how to create and access properties and methods. Finally,

you learned how to build new classes that inherit and override the features of other

classes.

Q&A
Q This hour introduced some unfamiliar concepts. Do I really need to

understand object-oriented programming to become a good PHP

programmer?

A The short answer is no. Most PHP scripts use little or no object-oriented code at all.

The object-oriented approach won't help you do things that you couldn't otherwise

achieve. The benefits of object-oriented programming lie in the organization of your

scripts, their reusability, and their extensibility.

Even if you decide not to produce object-oriented code, however, you may need to

decipher third-party programs that contain classes. This hour should help you

understand such code.

Q I'm confused by the special variable $this.

A Within a class, you sometimes need to call the class's methods or access its

properties. By combining the $this variable and the -> operator, you can do both.

The $this variable is the handle a class is automatically given to refer to itself and to

its components.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

How would you declare a class called emptyClass() that has no methods or

properties?

Given a class called emptyClass(), how would you create an object that is an

instance of it?

 153

How can you declare a property within a class?

How would you choose a name for a constructor method?

How would you create a constructor method in a class?

How would you create a regular method within a class?

How can you access and set properties or methods from within a class?

How would you access an object's properties and methods from outside the

object's class?

What should you add to a class definition if you want to make it inherit

functionality from another class?

Activities

Create a class called baseCalc() that stores two numbers as properties. Give it a

calculate() method that prints the numbers to the browser.

Create a class called addCalc() that inherits its functionality from baseCalc().

Override the calculate() method so that the sum of the properties is printed to

the browser.

Repeat activity 2, for a class called minusCalc(). Give minusCalc() a calculate

method that subtracts the first property from the second, outputting the result

to the browser.

 154

Hour 9: Working with Forms

Overview

Until now, all examples in this book have been missing a crucial dimension. You can

set variables and arrays, create and call functions, and work with objects. All this is

meaningless if users can't reach into a language's environment to offer it

information. In this hour, you will look at strategies for acquiring and working with

user input.

On the World Wide Web, HTML forms are the principal means by which substantial

amounts of information can pass from the user to the server. PHP is designed to

acquire and work with information submitted via HTML forms.

In this hour, you will learn

How to get and use environment variables

How to access information from form fields

How to work with form elements that allow multiple selections

How to create a single document that contains both an HTML form and the PHP

code that handles its submission

How to save state with hidden fields

How to redirect the user to a new page

How to build HTML forms that upload files and how to write the PHP code to

handle them

Global and Environment Variables
Before you actually build a form and use it to acquire data, you need to make a small

detour and look again at global variables. You first met these in Hour 6, "Functions."

A global variable is any variable declared at the "top level" of a script— that is,

declared outside a function. All functions are made available in a built-in associative

array called $GLOBALS. This is useful in Listing 9.1 because we can take a peek at

all our script's global variables with a single loop.

Listing 9.1: Looping Through the $GLOBALS Array

 1: <html>

 2: <head>

 3: <title>Listing 9.1 Looping through the $GLOBALS array</title>

 4: </head>

 155

 5: <body>

 6: <?php

 7: $user1 = "Bob";

 8: $user2 = "Harry";

 9: $user3 = "Mary";

10: foreach ($GLOBALS as $key=>$value)

11: {

12: print "\$GLOBALS[\"$key\"] == $value
";

13: }

14: ?>

15: </body>

16: </html>

We declare three variables and then loop through the built-in $GLOBALS associative

array, writing both array keys and values to the browser. In the output, we were

able to locate the variables we defined, but we saw an awful lot more besides these.

PHP automatically defines global variables that describe both the server and client

environments. These are known, therefore, as environment variables. According to

your system, server, and configuration, the availability of these variables will vary,

but they can be immensely useful. Table 9.1 lays out some common environment

variables. These can be accessed as part of the $GLOBALS array, or directly.

Table 9.1: Environment Variables

Variable Contains Example

$HTTP_USER_AGENT The name and

version of the

client

Mozilla/4.6

(X11;I;Linux2.2.6-15apmac ppc)

$REMOTE_ADDR The IP address

of the client

158.152.55.35

$REQUEST_METHOD Whether the

request was

GET or POST

POST

$QUERY_STRING For GET

requests, the

encoded data

send appended

to the URL

name=matt&address=unknown

$REQUEST_URI The full address /matt/php-

 156

of the request

including query

string

book/forms/eg9.14.html?

name=matt

$HTTP_REFERER The address of

the page from

which the

request was

made

http://www.test.com/a_page.html

In addition to environment variables, PHP makes some other global variables

available to you. The variable $GLOBALS["PHP_SELF"], for example, gives you the

path to the script currently running. On my system this was as follows:

/matt/php-book/forms/eg9.1.php

This variable can also be directly accessed as the global variable $PHP_SELF. This

will be useful in many of the examples in this hour. We will often include the HTML

forms we use in the same page as the PHP code that analyzes the content they

submit. We can use $PHP_SELF as the string assigned to the HTML FORM element's

ACTION argument, saving us the trouble of hard-coding the name of the page.

PHP's $GLOBALS array will become useful in other ways as well.

A Script to Acquire User Input
For now, we'll keep our HTML separate from our PHP code. Listing 9.2 builds a

simple HTML form.

Listing 9.2: A Simple HTML Form

 1: <html>

 2: <head>

 3: <title>Listing 9.2 A simple HTML form</title>

 4: </head>

 5: <body>

 6: <form action="eg9.3.php" method="GET">

 7: <input type="text" name="user">

 8:

 9: <textarea name="address" rows="5" cols="40">

10: </textarea>

11:

12: <input type="submit" value="hit it!">

13: </form>

14: </body>

15: </html>

 157

We define a form that contains a text field with the name "user", a text area with the

name "address", and a submit button. It is beyond the remit of this book to cover

HTML in detail. If you find the HTML in these examples hard going, take a look at

Sams Teach Yourself HTML in 24 Hours or one of the numerous online HTML

tutorials. The FORM element's ACTION argument points to a file called eg9.3.php,

which processes the form information. Because we haven't added anything more

than a filename to the ACTION argument, the file eg9.3.php should be in the same

directory on the server as the document that contains our HTML.

Listing 9.3 creates the code that receives our users' input.

Listing 9.3: Reading Input from the Form in Listing 9.2

 1: <html>

 2: <head>

 3: <title>Listing 9.3 Reading input from the form in Listing 9.2</title>

 4: </head>

 5: <body>

 6: <?php

 7: print "Welcome $user<P>\n\n";

 8: print "Your address is:<P>\n\n$address";

 9: ?>

10: </body>

11: </html>

This is the first script in this book that is not designed to be called by hitting a link

or typing directly into the browser's location field. We include the code from Listing

9.3 in a file called eg9.3.php. This file is called when a user submits the form defined

in Listing 9.2.

In the code, we have accessed two variables, $user and $address. It should come as

no surprise that these variables contain the values that the user added to the text

field named "user" and the text area named "address". Forms in PHP4 really are as

simple as that. Any information submitted by a user will be available to you in global

variables that will have the same names as those of the form elements on an HTML

page.

Accessing Input from Multiple SELECT Elements
The examples so far enable us to gather information from HTML elements that

submit a single value per element name. This leaves us with a problem when

working with SELECT elements. These elements make it possible for the user to

 158

choose multiple items. If we name the SELECT element with plain name

<select name="products" multiple>

the script that receives this data will only have access to a single value

corresponding to this name. We can change this behavior by renaming any

elements of this kind so that its name ends with an empty set of square brackets.

We do this in Listing 9.4.

Listing 9.4: An HTML Form Including a SELECT Element

 1: <html>

 2: <head>

 3: <title>Listing 9.4 An HTML form including a SELECT element</title>

 4: </head>

 5: <body>

 6: <form action="eg9.5.php" method="POST">

 7: <input type="text" name="user">

 8:

 9: <textarea name="address" rows="5" cols="40">

10: </textarea>

11:

12: <select name="products[]" multiple>

13: <option>Sonic Screwdriver

14: <option>Tricorder

15: <option>ORAC AI

16: <option>HAL 2000

17: </select>

18:

19: <input type="submit" value="hit it!">

20: </form>

21: </body>

22: </html>

In the script that processes the form input, we now find that input from the

"products[]" element will be available in an array called $products. We

demonstrate this in Listing 9.5.

Listing 9.5: Reading Input from the Form in Listing 9.4

 1: <html>

 2: <head>

 3: <title>Listing 9.5 Reading input from the form in Listing 9.4</title>

 4: </head>

 159

 5: <body>

 6: <?php

 7: print "Welcome $user<p>\n\n";

 8: print "Your address is:<p>\n\n$address<p>\n\n";

 9: print "Your product choices are:<p>\n\n";

10: print "\n\n";

11: foreach ($products as $value)

12: {

13: print "$value
\n";

14: }

15: print "";

16: ?>

17: </body>

18: </html>

The SELECT element is not the only one that allows for multiple values. By giving

a number of check boxes the same name, you can allow a user to choose many

values within a single field name. As long as the name you choose ends with empty

square brackets, PHP compiles the user input for this field into an array. We can

replace the SELECT element in Listing 9.4 with a series of check boxes to achieve

exactly the same effect:

<input type="checkbox" name="products[]" value="Sonic Screwdriver">

Sonic Screwdriver

<input type="checkbox" name="products[]" value="Tricorder">Tricorder

<input type="checkbox" name="products[]" value="ORAC AI">ORAC AI

<input type="checkbox" name="products[]" value="HAL 2000">HAL 2000

Accessing All the Fields from a Form in an Associative
Array
The techniques you have looked at so far work well, as long as your script knows in

advance what fields to expect. You may often want to write code that can adapt to

changes in a form or even service more than one form, without worrying itself about

the names of specific form fields. The global variables that PHP4 makes available

provide the solution to this problem. According to whether or not a submitting form

used the GET or POST method, you will have access to one or both of

$HTTP_GET_VARS or $HTTP_POST_VARS. These are associative arrays that contain

the name/value pairs submitted. Listing 9.6 takes advantage of this to list all the

fields submitted from a form via a GET request.

 160

Listing 9.6: Reading Input from Any Form Using the $HTTP_GET_VARS

Array

 1: <html>

 2: <head>

 3: <title>Listing 9.6 Reading input from any form using the $HTTP_GET_VARS

array</title>

 4: </head>

 5: <body>

 6: <?php

 7: foreach ($HTTP_GET_VARS as $key=>$value)

 8: {

 9: print "$key == $value
\n";

10: }

11: ?>

12: </body>

13: </html>

This code lists the names and values of all parameters passed to it via a GET

transaction. Of course, it's not yet smart enough to deal with parameters that have

been set up to resolve to arrays. If we were to amend the HTML form in Listing 9.4

that includes a multiple SELECT element to point to the script in Listing 9.6, we

would typically get the following output when the form was submitted:

user == Matt Zandstra

address == London, England

products == Array

The products array exists in the $HTTP_GET_VARS[products] array item, but we

haven't yet written code to take account of this eventuality. Listing 9.7 tests the

data type of each of the elements in $HTTP_GET_VARS and amends the output

accordingly.

Listing 9.7: Reading Input from Any Form Using the $HTTP _GET_VARS

array

 1: <html>

 2: <head>

 3: <title>Listing 9.7 Reading input from any form using the $HTTP_GET_VARS

array</title>

 4: </head>

 5: <body>

 6: <?php

 161

 7: foreach ($HTTP_GET_VARS as $key=>$value)

 8: {

 9: if (gettype($value) == "array")

10: {

11: print "$key ==
\n";

12: foreach ($value as $two_dim_value)

13: print ".........$two_dim_value
";

14: }

15: else

16: {

17: print "$key == $value
\n";

18: }

19: }

20: ?>

21: </body>

22: </html>

As before, we use foreach to loop through the $HTTP_GET_VARS array. We use the

gettype() function to ascertain whether each of its values is an array. If the value is

itself an array, we create a second foreach statement to loop through it, outputting

each value to the browser.

Distinguishing Between GET and POST Transactions
To work flexibly, a script that can accept data from any source must be able to

decide whether to read the $HTTP_GET_VARS or $HTTP_POST_VARS

arrays. On most systems, you can discover whether you are dealing with a GET or

POST transaction in the environment variable $REQUEST_METHOD, which

should contain the string "post" or "get". To be absolutely sure that your scripts

are entirely portable, however, you can take advantage of the fact that the

$HTTP_POST_VARS array will only be present if a POST request has been

made.

Listing 9.8 amends our form parser script to work with the correct array every time.

Listing 9.8: Extracting Parameters from Either a GET or POST Request

 1: <html>

 2: <head>

 3: <title>Listing 9.8 Extracting parameters from

 4: either a GET or POST request</title>

 5: </head>

 162

 6: <body>

 7: <?php

 8: $PARAMS = (isset($HTTP_POST_VARS))

 9: ? $HTTP_POST_VARS : $HTTP_GET_VARS;

10: foreach ($PARAMS as $key=>$value)

11: {

12: if (gettype($value) == "array")

13: {

14: print "$key ==
\n";

15: foreach ($value as $two_dim_value)

16: print ".........$two_dim_value
"

17: }

18: else

19: {

20: print "$key == $value
\n";

21: }

22: }

23: ?>

24: </body>

25: </html>

We use the ternary operator to set a variable called $PARAMS. Using the built-in

isset() function, we first check whether the $HTTP_POST_VARS array has

been set. isset() returns true if the variable it is passed has been defined. If the

$HTTP_POST_VARS array has been defined, the ternary expression resolves

to this; otherwise, it resolves to $HTTP_GET_VARS. We can now use the

$PARAMS array throughout the rest of the script without worrying about whether

it has been populated as the result of a GET or a POST request.

Combining HTML and PHP Code on a Single Page
In some circumstances, you may want to include form-parsing code on the same

page as a hard-coded HTML form. Such a combination can be useful if you need to

present the same form to the user more than once. You would have more flexibility

if you were to write the entire page dynamically, of course, but you would miss out

on one of the great strengths of PHP. The more standard HTML you can leave in your

pages, the easier they will be for designers and page builders to amend without

reference to you. You should avoid scattering substantial chunks of PHP code

throughout your documents, however. This will make them hard to read and

 163

maintain. Where possible you should create functions that can be called from within

your HTML code, and can be reused in other projects.

For the following examples, imagine that we are creating a site that teaches basic

math to preschool children and have been asked to create a script that takes a

number from form input and tells the user whether it is larger or smaller than a

predefined integer.

Listing 9.9 creates the HTML. For this example, we need only a single text field, but

even so, we'll include a little PHP.

Listing 9.9: An HTML Form That Calls Itself

 1: <html>

 2: <head>

 3: <title>Listing 9.9 An HTML form that calls itself</title>

 4: </head>

 5: <body>

 6: <form action="<?php print $PHP_SELF?>" method="POST">

 7: Type your guess here: <input type="text" name="guess">

 8: </form>

 9: </body>

10: </html>

Whatever we name the page that contains this form, the form always calls it

because we have assigned the value of $PHP_SELF to the FORM element's ACTION

argument. Note that we have not created a submit button. Most recent browsers will

submit a form consisting of a single text field when the user hits the return key, but

you should be aware that some older browsers cannot do this.

The script in Listing 9.9 will not produce any output. In Listing 9.10, we begin to

build up the PHP element of the page. First, we need to define the number that the

user will guess. In a fully working version, we would probably randomly generate

this, but for now we will keep it simple. Next, we need to decide whether the form

has been submitted; otherwise, we will attempt to assess variables that have not

yet been made available. We can test for submission by testing for the existence of

the variable $guess. $guess will have been made available as a global variable if

your script has been sent a "guess" parameter. If this isn't present, we can safely

assume that the user has arrived at the page without submitting a form. If the value

is present, we can go ahead and test the value it contains.

Listing 9.10: A PHP Number Guessing Script

 1: <?php

 2: $num_to_guess = 42;

 164

 3: $message = "";

 4: if (! isset($guess))

 5: {

 6: $message = "Welcome to the guessing machine!";

 7: }

 8: elseif ($guess > $num_to_guess)

 9: {

10: $message = "$guess is too big! Try a smaller number";

11: }

12: elseif ($guess < $num_to_guess)

13: {

14: $message = "$guess is too small! Try a larger number";

15: }

16: else // must be equivalent

17: {

18: $message = "Well done!";

19: }

20: ?>

21: <html>

22: <head>

23: <title>Listing 9.10 A PHP number guessing script</title>

24: </head>

25: <body>

26: <h1>

27: <?php print $message ?>

28: </h1>

29: <form action="<?php print $PHP_SELF?>" method="POST">

30: Type your guess here: <input type="text" name="guess">

31: </form>

32: </body>

33: </html>

The bulk of this script consists of an if statement that determines which string to

assign to the variable $message. If the $guess variable has not been defined, we

assume that the user has arrived for the first time and assign a welcome string the

variable. Otherwise, we test the $guess variable against the number we have stored

in $num_to_guess, and assign advice to $message accordingly. If $guess is neither

larger nor smaller than $num_to_guess, we can assume that it is equivalent and

 165

assign a congratulations message to the variable. Now all we need to do is print the

$message variable within the body of the HTML.

There are a few more additions yet, but you can probably see how easy it would be

to hand this page over to a designer. He can make it beautiful without having to

disturb the programming in any way.

Using Hidden Fields to Save State
The script in Listing 9.10 has no way of knowing how many guesses a user has made.

We can use a hidden field to keep track of this. A hidden field behaves exactly the

same as a text field, except that the user cannot see it, unless he views the HTML

source of the document that contains it. Listing 9.11 adds a hidden field to the

number guessing script and some PHP to work with it.

Listing 9.11: Saving State with a Hidden Field

 1: <?php

 2: $num_to_guess = 42;

 3: $message = "";

 4: $num_tries = (isset($num_tries)) ? ++$num_tries : 0;

 5: if (! isset($guess))

 6: {

 7: $message = "Welcome to the guessing machine!";

 8: }

 9: elseif ($guess > $num_to_guess)

10: {

11: $message = "$guess is too big! Try a smaller number";

12: }

13: elseif ($guess < $num_to_guess)

14: {

15: $message = "$guess is too small! Try a larger number";

16: }

17: else // must be equivalent

18: {

19: $message = "Well done!";

20: }

21: $guess = (int) $guess;

22: ?>

23: <html>

24: <head>

25: <title>Listing 9.11 Saving state with a hidden field</title>

 166

26: </head>

27: <body>

28: <h1>

29: <?php print $message ?>

30: </h1>

31: Guess number: <?php print $num_tries?>

32: <form action="<?php print $PHP_SELF?>" method="POST">

33: Type your guess here:

34: <input type="text" name="guess" value="<?php print $guess?>">

35: <input type="hidden" name="num_tries" value="<?php print $num_tries?>">

36: </form>

37: </body>

38: </html>

The hidden field is given the name "num_tries". We also use PHP to write its value.

While we're at it, we do the same for the "guess" field, so that the user can always

see his last guess. This technique is useful for scripts that parse user input. If we

were to reject a form submission for some reason we can at least allow our user to

edit his previous query.

 Tip When you need to output the value of an expression to the browser, you can

of course use print() or echo(). When you are entering PHP mode explicitly

to output such a value you can also take advantage of a special extension to

PHP's short opening tags. If you add an equals (=) sign to the short PHP

opening tag, the value contained will be printed to the browser. So

<? print $test;?>

is equivalent to

<?=$test?>

Within the main PHP code, we use a ternary operator to increment the $num_tries

variable. If the $num_tries variable is set, we add one to it and reassign this

incremented value; otherwise, we initialize $num_tries to 0. Within the body of the

HTML, we can now report to the user how many guesses he has made.

 Caution Don't entirely trust hidden fields. You don't know where their values

have been! This isn't to say that you shouldn't use them, just be aware

that your users are capable of viewing and amending source code

should they want to cheat your scripts.

Use hidden fields for aesthetic reasons. They have no value as security

features.

 167

Redirecting the User
Our simple script still has one major drawback. The form is rewritten whether or not

the user guesses correctly. The fact that the HTML is hard-coded makes it difficult to

avoid writing the entire page. We can, however, redirect the user to a

congratulations page, thereby sidestepping the issue altogether.

When a server script communicates with a client, it must first send some headers

that provide information about the document to follow. PHP usually handles this for

you automatically, but you can choose to send your own header lines with PHP's

header() function. To call the header() function, you must be sure that no output

has been sent to the browser. The first time that content is sent to the browser, PHP

will send out headers and it will be too late for you to send your own. Any output

from your document, even a line break or a space outside of your script tags will

cause headers to be sent. If you intend to use the header() function in a script you

must make certain that nothing precedes the PHP code that contains the function

call. You should also check any libraries that you might be using. Listing 9.12 shows

typical headers sent to the browser by PHP.

Example 9.12: Typical Server Headers Sent from a PHP Script

1: HEAD /matt/php-book/forms/eg9.1.php HTTP/1.0

2: HTTP/1.1 200 OK

3: Date: Sun, 09 Jan 2000 18:37:45 GMT

4: Server: Apache/1.3.9 (UNIX) PHP/4.0

5: Connection: close

6: Content-Type: text/html

 Tip You can see headers sent in response to a request by using a telnet client.

Connect to a Web host at port 80 and then type

HEAD /path/to/file.html HTTP/1.0

followed by two returns. The headers should be displayed on your client.

By sending a "Location" header instead of PHP's default, you can cause the browser

to be redirected to a new page:

header("Location: http://www.corrosive.co.uk");

Assuming that we have created a suitably upbeat page called "congrats.html", we

can amend our number guessing script to redirect the user if she guesses correctly,

as shown in Listing 9.13.

Listing 9.13: Using header() to Send Raw Headers

 1: <?php

 2: $num_to_guess = 42;

 3: $message = "";

 168

 4: $num_tries = (isset($num_tries)) ? ++$num_tries : 0;

 5: if (! isset($guess))

 6: {

 7: $message = "Welcome to the guessing machine!";

 8: }

 9: elseif ($guess > $num_to_guess)

10: {

11: $message = "$num is too big! Try a smaller number";

12: }

13: elseif ($guess < $num_to_guess)

14: {

15: $message = "$num is too small! Try a larger number";

16: }

17: else // must be equivalent

18: {

19: header("Location: congrats.html");

20: exit;

21: }

22: $guess = (int) $guess;

23: ?>

24: <html>

25: <head>

26: <title>Listing 9.13 Using header() to send raw headers</title>

27: </head>

28: <body>

29: <h1>

30: <?php print $message ?>

31: </h1>

32: Guess number: <?php print $num_tries?>

33: <form action="<?php print $PHP_SELF?>" method="POST">

34: Type your guess here:

35: <input type="text" name="guess" value="<?php print $guess?>">

36: <input type="hidden" name="num_tries"

37: value="<?php print $num_tries ?>">

38: </form>

39: </body>

40: </html>

 169

The else clause of our if statement now causes the browser to download

"congrats.html". We ensure that all output from the current page is aborted with the

exit statement, which abruptly ends parsing and output, whether HTML or PHP.

File Upload Forms and Scripts
So far we've looked at simple form input. Browsers Netscape 2 or better and

Internet Explorer 4 or better all support file uploads, and so, of course, does PHP4.

In this section, you will examine the features that PHP makes available to deal with

this kind of input.

First, we need to create the HTML. HTML forms that include file upload fields must

include an ENCTYPE argument:

ENCTYPE="multipart/form-data"

PHP also requires that a hidden field be included before the file upload field. This

should be called MAX_FILE_SIZE and should have a value representing the

maximum size in bytes of the file that you are willing to accept. This size cannot

override the maximum size set in the upload_max_filesize field in your php.ini file

that defaults to 2 megabytes. After the MAX_FILE_SIZE field has been entered, you

are ready to add the upload field itself. This is simply an INPUT element with a TYPE

argument of "file". You can give it any name you want. Listing 9.14 brings all this

together into an HTML upload form.

Listing 9.14: A Simple File Upload Form

 1: <html>

 2: <head>

 3: <title>Listing 9.14 A simple file upload form</title>

 4: </head>

 5: <body>

 6: <form enctype="multipart/form-data" action="<?print $PHP_SELF?>"

method="

 POST">

 7: <input type="hidden" name="MAX_FILE_SIZE" value="51200">

 8: <input type="file" name="fupload">

 9: <input type="submit" value="upload!">

10: </form>

11: </body>

12: </html>

Notice that once again this form calls the page that contains it. This is because we

are going to add some PHP code to handle the uploaded file. We limited file uploads

 170

to 50KB and named our upload field "fupload". As you might expect, this name will

soon become important.

When a file is successfully uploaded, it is given a unique name and stored in a

temporary directory (/tmp on UNIX systems). The full path to this file becomes

available to you in a global variable with the same name as the file upload form field

($fupload in this case). PHP stores more information about the file for you in a series

of global variables. These consist of the variable name (as derived from the form file

upload field) followed by an underscore character and "name", "size", and "type".

Table 9.2 shows the meaning of these variables.

Table 9.2: File Upload Global Variables

Variable Name Contains Example

$fupload Path to

temporary

variable

/tmp/php5Pq3fU

$fuploadname Name of

uploaded file

test.gif

$fuploadsize Size (in bytes)

of uploaded file

6835

$fupload type MIME type of

uploaded file

(where given by

client)

image/gif

PHP4 also provides a new built-in variable that contains file upload information in

array format. If one or more files has been uploaded via a form, the

$HTTP_POST_FILES array will be indexed by the names of each upload field in the

form. The corresponding value for each of these keys will itself be an associative

array. These fields are described in Table 9.3.

Table 9.3: File Upload Global Variables

Element Contains Example

$HTTP_POST_FILES[fupload][name] Name of

uploaded file

test.gif

$HTTP_POST_FILES[fupload][size] Size (in bytes)

of uploaded file

6835

$HTTP_POST_FILES[fupload][type] MIME type of

uploaded file

(where given by

image/gif

 171

client)

Armed with this information, we can write a quick and dirty script that displays

information about uploaded files (see Listing 9.15). If the uploaded file is in GIF

format, the script will even attempt to display it.

Listing 9.15: A File Upload Script

 1: <html>

 2: <head>

 3: <title>Listing 9.15 A file upload script</title>

 4: </head>

 5: <?php

 6: $file_dir = "/home/matt/htdocs/uploads";

 7: $file_url =

"http://80-www.corrosive.co.uk.proxy.lib.uiowa.edu/matt/uploads";

 8: if (isset($fupload))

 9: {

10: print "path: $fupload
\n";

11: print "name: $fupload_name
\n";

12: print "size: $fupload_size bytes
\n";

13: print "type: $fupload_type<p>\n\n";

14: if ($fupload_type == "image/gif")

15: {

16: copy ($fupload, "$file_dir/$fupload_name") or die ("Couldn't copy");

17:

18: print "<p>\n\n";

19: }

20: }

21: ?>

22: <body>

23: <form enctype="multipart/form-data" action="<?php print $PHP_SELF?>"

 method="POST">

24: <input type="hidden" name="MAX_FILE_SIZE" value="51200">

25: <input type="file" name="fupload">

x<input type="submit" value="Send file!">

27: </form>

28: </body>

29: </html>

In Listing 9.15, we first check to see whether the $fupload global variable exists. If

 172

it does, we can assume that a file upload exists (at least for the purposes of this

exercise).

 Caution Never assume that data sent to your scripts originates from a

particular source or that a request contains the type and range of data

that your script was designed to accept. In Listing 9.15, we make the

assumption that a particular variable derives its name from a form

upload field. In fact, there is nothing to stop a mischievous user from

creating her own form that sends data to our script. She could easily

send our script a parameter with the same name as our form upload

file but with plain text content.

If this sounds paranoid, it is meant to. Paranoia is a good thing in

server-side Web programming. Never trust data that comes from an

external source, even if that source seems to be a form that you have

created.

If a file has been uploaded, the path to the uploaded file on the server is contained

in the variable $fupload, and we print this to the browser. We also print the filename,

which is stored in $fupload_name, the file's size, which is stored in $fupload_size,

and the file's MIME type, which is stored in $fupload_type.

We then test the value contained by $fupload_type. If this is "image/gif", we

assume that we are dealing with a GIF. In fact, it would be a good idea to test this

ignoring case, and you will see how to do this in Hour 17, "Working with Strings."

Our assumption here also glosses over the possibility that another kind of file

altogether was named with a ".gif" extension, but let's ease off on the caution for

now.

If we are dealing with a GIF image, we use the copy() function to copy the uploaded

file from its default location to a directory in our server space. The copy() function

requires two string arguments; the original and new paths to a file. It returns true if

the copy is successful. The original path to our file is stored in $fupload. We have

created a variable $file_dir that contains the full path to the directory we want to use

to store uploaded images. This, combined with the file's name as stored in

$fupload_name, forms the second argument passed to copy(). As a result of this

function call, the uploaded file should be copied to our upload directory with its

original name restored. Note that on UNIX systems server scripts run as a special

user, often 'nobody'. Before you copy a file to a directory you should make sure that

your process is allowed to do so. We are using the or operator and the die() function

to abort the script if copying fails. We will cover this technique in more detail in Hour

10, "Working with Files."

Having copied the file, we do not need to delete the original. PHP will handle this for

 173

us.

When we created the $file_dir variable to store the file path to our upload directory,

we also created a variable called $file_url to store the URL of the same directory. We

wrap up the script by writing an HTML image element that references our newly

written image.

Summary

If you've kept up so far, things should be getting exciting now. You have the tools to

create truly sophisticated and interactive environments. There are still a few things

missing, of course. Now that you can get information from the user, it would be nice

to be able to do something with it. Write it to a file, perhaps. That is the subject of

the next hour.

Throughout this hour, you have learned how to work with the $GLOBALS associative

array and acquire environment variables, form input, and uploaded files using

global variables. You have also learned how to send raw headers to the client to

redirect a browser. You have learned how to acquire list information from form

submissions and how to pass information from script call to script call using hidden

fields.

Q&A
Q Can I create arrays for values entered into elements other than select

and check box fields?

A Yes, in fact any element name ending with empty square brackets in a form will

resolve to an array element when the form is submitted. You can use this fact to

group values submitted from multiple fields of any type into an array.

Q The header() function seems powerful. Will we look at HTTP headers in

more detail?

A We cover HTTP (Hypertext Transfer Protocol) in more detail in Hour 13, "Beyond

the Box."

Q Automatically converting form element names into variables seems a

little risky. Can I disable this feature?

A Yes, you can ensure that submitted form element names are not converted into

global variables by setting the gpc_globals directive to "off" in the php.ini file.

Workshop

 174

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

Which environment variable could you use to determine the IP address of a user?

Which environment variable could you use to find out about the browser that

called your script?

What should you name your form fields to access their submitted values from an

array variable called $form_array?

Which built-in associative array contains all values submitted as part of a GET

request?

Which built-in associative array contains all values submitted as part of a POST

request?

What function would you use to redirect the browser to a new page? What string

would you pass it?

How must you limit the size of a file that a user can submit via a particular upload

form?

How can you set a limit to the size of upload files for all forms and scripts?

Activities

Create a calculator script that allows the user to submit two numbers and choose

an operation to perform on them (addition, multiplication, division, subtraction).

Use hidden fields with the script you created in activity 1 to store and display the

number of requests that the user has submitted.

 175

Hour 10: Working with Files

Overview

Testing, reading, and writing to files are staple activities for any full-featured

programming language. PHP is no exception, providing you with functions that

make the process straightforward. In this hour, you will learn

How to include files in your documents

How to test files and directories

How to open a file before working with it

How to read data from files

How to write or append to a file

How to lock a file

How to work with directories

Including Files with include()
The include() function enables you to incorporate files into your PHP documents.

PHP code in these files can be executed as if it were part of the main document. This

can be useful for including library code in multiple pages.

Having created a killer function, your only option until now would have been to paste

it into every document that needs to use it. Of course, if you discover a bug, or want

to add a feature, you will have to find every page that uses the function to make the

change. The include() statement can save you from this chore. You can add the

function to a single document and, at runtime, read this into any page that needs it.

The include() function requires a single argument, a relative path to the file to be

included. Listing 10.1 creates a simple PHP script that uses include() to

incorporate and output the contents of a file.

Listing 10.1: Using include()

 1: <html>

 2: <head>

 3: <title>Listing 10.1 Using include()</title>

 4: </head>

 5: <body>

 6: <?php

 7: include("eg10.2.php");

 8: ?>

 176

 9: </body>

10: </html>

The include() statement in Listing 10.1 incorporates the document

eg10.2.php, the contents of which you can see in Listing 10.2. When run, Listing

10.1 outputs the string "I have been included!!", which may seem strange,

given that we have included plain text within a block of PHP code. Shouldn't this

cause an error? In fact, the contents of an included file are displayed as HTML by

default. If you want to execute PHP code in an included file, you must enclose it in

PHP start and end tags. In Listings 10.3 and 10.4, we amend the previous example

so that code is executed in the included file.

Example 10.2: The File Included in Listing 10.1

1: I have been included!!

Listing 10.3: Using the include() Function to Execute PHP in Another File

 1: <html>

 2: <head>

 3: <title>Listing 10.3 Using include to execute PHP in another file</title>

 4: </head>

 5: <body>

 6: <?php

 7: include("eg10.4.php");

 8: ?>

 9: </body>

10: </html>

Listing 10.4: An Include File Containing PHP Code

1: <?php

2: print "I have been included!!
";

3: print "But now I can add up... 4 + 4 = ".(4 + 4);

4: ?>

Included files in PHP4 can return a value in the same way as functions do. As in a

function, using the return statement ends the execution of code within the

included file. Additionally, no further HTML will be included. In Listings 10.5 and

10.6, we include a file, assigning its return value to a variable.

Listing 10.5: Using include() to Execute PHP and Assign the Return Value

 1: <html>

 2: <head>

 3: <title>Listing 10.5 Using include() to execute PHP and assign the return

 177

 Avalue</title>

 4: </head>

 5: <body>

 6: <?php

 7: $addResult = include("eg10.6.php");

 8: print "The include file returned $addResult";

 9: ?>

10: </body>

11: </html>

Listing 10.6: An Include File That Returns a Value

1: <?php

2: $retval = (4 + 4);

3: return $retval;

4: ?>

5: This HTML should never be displayed because it comes after a return statement!

 Note Returning values from included files would only work in PHP3 if the return

statement was contained in a function. The code in Listing 10.6 would cause

an error.

You can use an include() statement in a conditional statement, and the

referenced file will only be read if the condition is met. The include() statement

in the following fragment will never be called, for example

$test = false;

if ($test)

 {

 include("a_file.txt"); // won't be included

 }

If you use an include() statement within a loop, it will be replaced with the

contents of the referenced file each time the include() statement is called. This

content will be executed for every call. Listing 10.7 illustrates this by using an

include() statement in a for loop. The include() statement references a

different file for each iteration.

Listing 10.7: Using include() Within a Loop

 1: <html>

 2: <head>

 3: <title>Listing 10.7 Using include() within a loop</title>

 178

 4: </head>

 5: <body>

 6: <?php

 7: for ($x = 1; $x<=3; $x++)

 8: {

 9: $incfile = "incfile$x".".txt";

10: print "Attempting include $incfile
";

11: include("$incfile");

12: print "<p>";

13: }

14: ?>

15: </body>

16: </html>

When Listing 10.7 is run, it includes the content of three different files,

"incfile1.txt", "incfile2.txt", and "incfile3.txt". Assuming that each of

these files simply contains a confirmation of its own name, the output should look

something like this:

This is incfile1.txt

Attempting to include incfile2.txt

This is incfile2.txt

Attempting to include incfile3.txt

 Note PHP also has a require() statement, which performs a similar function. As

of PHP4, you can include a require() statement in a loop as you can with

include(). A file included as a result of a require() statement cannot return

a value, however.

Testing Files

Before you work with a file or directory, it is often a good idea to learn more about

it. PHP4 provides many functions that help you to discover information about files

on your system. This section briefly covers some of the most useful.

 179

Checking for Existence with file_exists()

You can test for the existence of a file with the file_exists() function. This requires a

string representing an absolute or relative path to a file that may or may not be

there. If the file is found, it returns true; otherwise, it returns false.

if (file_exists("test.txt"))

 print "The file exists!";

A File or a Directory?

You can confirm that the entity you are testing is a file, as opposed to a directory,

with the is_file() function. is_file() requires the file path and returns a Boolean

value:

if (is_file("test.txt"))

 print "test.txt is a file!";

Conversely, you might want to check that the entity you are testing is a directory.

You can do this with the is_dir() function. is_dir() requires the path to the directory

and returns a Boolean value:

if (is_dir("/tmp"))

 print "/tmp is a directory";

Checking the Status of a File

When you know that a file exists, and it is what you expect it to be, you can then find

out some things that you can do with it. Typically, you might want to read, write to,

or execute a file. PHP can help you with all of these.

is_readable() tells you whether you can read a file. On UNIX systems, you may be

able to see a file but still be barred from reading its contents. is_readable() accepts

the file path as a string and returns a Boolean value:

if (is_readable("test.txt"))

 print "test.txt is readable";

 180

is_writable() tells you whether you can write to a file. Once again it requires the file

path and returns a Boolean value:

if (is_writable("test.txt"))

 print "test.txt is writable";

is_executable() tells you whether you can run a file, relying on either the file's

permissions or its extension depending on your platform. It accepts the file path and

returns a Boolean value:

if (is_executable("test.txt")

 print "test.txt is executable";

Determining File Size with filesize()

Given the path to a file, filesize() attempts to determine and return its size in bytes.

It returns false if it encounters problems.

print "The size of test.txt is.. ";

print filesize("test.txt");

Getting Date Information About a File

Sometimes you will need to know when a file was last written to or accessed. PHP

provides several functions that can provide this information.

You can find out when a file was last accessed with fileatime(). This function

requires the file path and returns the date that the file was last accessed. To access

a file means either to read or write to it. Dates are returned from all these functions

in UNIX epoch format. That is, the number of seconds since 1 January 1970. In our

examples, we use the date() function to translate this into human readable form.

You learn more about date functions in Hour 15, "Working with Dates."

$atime = fileatime("test.txt");

print "test.txt was last accessed on ";

print date("D d M Y g:i A", $atime);

// Sample output: Thu 13 Jan 2000 2:26 PM

 181

You can discover the modification date of a file with the function filemtime(), which

requires the file path and returns the date in UNIX epoch format. To modify a file

means to change its contents in some way.

$mtime = filemtime("test.txt");

print "test.txt was last modified on ";

print date("D d M Y g:i A", $mtime);

// Sample output: Thu 13 Jan 2000 2:26 PM]

PHP also allows you to test the change time of a document with the filectime()

function. On UNIX systems, the change time is set when a file's contents are

modified or changes are made to its permissions or ownership. On other platforms,

the filectime() returns the creation date.

$ctime = filectime("test.txt");

print "test.txt was last changed on ";

print date("D d M Y g:i A", $ctime);

// Sample output: Thu 13 Jan 2000 2:26 PM]

Creating a Function That Performs Multiple File Tests

Listing 10.8 creates a function that brings the file test functions we have looked at

together into one script.

Listing 10.8: A Function to Output the Results of Multiple File Tests

 1: <html>

 2: <head>

 3: <title>Listing 10.8 A function to output the results of multiple file tests</

 title>

 4: </head>

 5: <body>

 6: <?php

 7: $file = "test.txt";

 8: outputFileTestInfo($file);

 9: function outputFileTestInfo($f)

10: {

 182

11: if (! file_exists($f))

12: {

13: print "$f does not exist
";

14: return;

15: }

16: print "$f is ".(is_file($f)?"":"not ")."a file
";

17: print "$f is ".(is_dir($f)?"":"not ")."a directory
";

18: print "$f is ".(is_readable($f)?"":"not ")."readable
";

19: print "$f is ".(is_writable($f)?"":"not ")."writable
";

20: print "$f is ".(is_executable($f)?"":"not ")."executable
";

21: print "$f is ".(filesize($f))." bytes
";

22: print "$f was accessed on ".date("D d M Y g:i A", fileatime($f))."
";

23: print "$f was modified on ".date("D d M Y g:i A", filemtime($f))."
";

24: print "$f was changed on ".date("D d M Y g:i A", filectime($f))."
";

25: }

26:

27: ?>

28: </body>

29: </html>

Notice that we have used the ternary operator as a compact way of working with

some of these tests. Let's look at one of these in more detail:

print "$f is ".(is_file($f)?"":"not ")."a file
";

We use the is_file() function as the right-hand expression of the ternary operator. If

this returns true, an empty string is returned. Otherwise, the string "not " is

returned. The return value of the ternary expression is added to the string to be

printed with concatenation operators. This statement could be made clearer but less

scompact, as follows:

$is_it = is_file($f)?"":"not ";

print "$f is $isit"."a file";

 183

We could, of course, be even clearer with an if statement, but imagine how large the

function would become if we had used the following:

if (is_file($f))

 print "$fi is a file
";

else

 print "$fi is not a file
";

Because the result of these three approaches is the same, the approach you take

becomes broadly a matter of preference.

Creating and Deleting Files

If a file does not yet exist, you can create one with the touch() function. Given a

string representing a file path, touch() attempts to create an empty file of that name.

If the file already exists, the contents are not disturbed, but the modification date is

updated to the time at which the function executed.

touch("myfile.txt");

You can remove an existing file with the unlink() function. Once again, unlink()

accepts a file path:

unlink("myfile.txt");

All functions that create, delete, read, write, or modify files on UNIX systems require

that the correct file or directory permissions are set.

Opening a File for Writing, Reading, or Appending

Before you can work with a file, you must first open it for reading, writing, or both.

PHP provides the fopen() function for this. fopen() requires a string containing the

file path, followed by a string containing the mode in which the file is to be opened.

The most common modes are read ('r'), write ('w'), and append ('a'). fopen()

returns an integer you will later use to work with the open file. This integer is known

as a file pointer and should be assigned to a variable. To open a file for reading, you

would use the following:

$fp = fopen("test.txt", 'r');

You would use the following to open a file for writing:

 184

$fp = fopen("test.txt", 'w');

To open a file for appending (that is, to add data to the end of a file), you would use

this:

$fp = fopen("test.txt", 'a');

fopen() returns false if the file cannot be opened for any reason. It is a good idea,

therefore, to test the function's return value before proceeding to work with it. You

can do this with an if statement:

if ($fp = fopen("test.txt", "w"))

 {

 // do something with $fp

 }

Or you can use a logical operator to end execution if an essential file can't be

opened:

($fp = fopen("test.txt", "w")) or die ("Couldn't open file, sorry");

If the fopen() function returns true, the rest of the expression won't be parsed, and

the die() function (which writes a message to the browser and ends the script) will

never be reached. Otherwise, the right-hand side of the or operator will be parsed,

and the die() function will be called.

Assuming that all is well and you go on to work with your open file, you should

remember to close it when you have finished. You can do this by calling fclose(),

which requires the file pointer returned from a successful fopen() call as its

argument:

fclose($fp);

Reading from Files

PHP provides a number of functions for reading data from files. These enable you to

read by the byte, the line, or even the character.

 185

Reading Lines from a File with fgets() and feof()

After you have opened a file for reading, you will often need to access it line by line.

To read a line from an open file, you can use fgets(), which requires the file pointer

returned from fopen() as an argument. You must also pass it an integer as a second

argument. This specifies the number of bytes the function should read if it doesn't

first encounter a line end or the end of the file. The fgets() function reads the file

until it reaches a newline character ("\n"), the number of bytes specified in the

length argument, or the end of the file.

$line = fgets($fp, 1024); // where $fp is the file pointer returned by fopen()

Although you can read lines with fgets(), you need some way of telling when you

have reached the end of the file. The feof() function does this, returning true when

the end of the file has been reached and false otherwise. Once again this function

requires a file pointer as its argument:

feof($fp); // where $fp is the file pointer returned by fopen()

You now have enough information to read a file line by line, as shown in Listing 10.9.

Listing 10.9: Opening and Reading a File Line by Line

 1: <html>

 2: <head>

 3: <title>Listing 10.9 Opening and reading a file line by line</title>

 4: </head>

 5: <body>

 6: <?php

 7: $filename = "test.txt";

 8: $fp = fopen($filename, "r") or die("Couldn't open $filename");

 9: while (! feof($fp))

10: {

11: $line = fgets($fp, 1024);

12: print "$line
";

13: }

14: ?>

 186

15: </body>

16: </html>

We call fopen() with the name of the file that we want to read, using the or operator

to ensure that script execution ends if the file cannot be read. This usually occurs if

the file does not exist, or (on a UNIX system) if the file's permissions won't allow the

script read access to the file. The actual reading takes place in the while statement.

The while statement's test expression calls feof() for each iteration, ending the loop

when it returns true. In other words, the loop continues until the end of the file is

reached. Within the code block, we use fgets() to extract a line (or 1024 bytes) of

the file. We assign the result to $line and then print it to the browser, appending a

 tag for the sake of readability.

Reading Arbitrary Amounts of Data from a File with fread()

Rather than reading text by the line, you can choose to read a file in arbitrarily

defined chunks. The fread() function accepts a file pointer as an argument, as well

as the number of bytes you want to read. It returns the amount of data you have

requested unless the end of the file is reached first.

$chunk = fread($fp, 16);

Listing 10.10 amends our previous example so that it reads data in chunks of 16

bytes rather than by the line.

Listing 10.10: Reading a File with fread()

 1: <html>

 2: <head>

 3: <title>Listing 10.10 Reading a file with fread()</title>

 4: </head>

 5: <body>

 6: <?php

 7: $filename = "test.txt";

 8: $fp = fopen($filename, "r") or die("Couldn't open $filename");

 9: while (! feof($fp))

10: {

 187

11: $chunk = fread($fp, 16);

12: print "$chunk
";

13: }

14: ?>

15: </body>

16: </html>

Although fread() allows you to define the amount of data acquired from a file, it

won't let you decide the position from which the acquisition begins. You can set this

manually with the fseek() function. fseek() enables you to change your current

position within a file. It requires a file pointer and an integer representing the offset

from the start of the file (in bytes) to which you want to jump:

fseek($fp, 64);

Listing 10.11 uses fseek() and fread() to output the second half of a file to the

browser.

Listing 10.11: Moving Around a File with fseek()

 1: <html>

 2: <head>

 3: <title>Listing 10.11 Moving around a file with fseek()</title>

 4: </head>

 5: <body>

 6: <?php

 7: $filename = "test.txt";

 8: $fp = fopen($filename, "r") or die("Couldn't open $filename");

 9: $fsize = filesize($filename);

10: $halfway = (int)($fsize / 2);

11: print "Halfway point: $halfway
\n";

12: fseek($fp, $halfway);

13: $chunk = fread($fp, ($fsize − $halfway));

14: print $chunk;

15: ?>

 188

16: </body>

17: </html>

We calculate the halfway point of our file by dividing the return value of filesize() by

2. We can then use this as the second argument to fseek(), jumping to the halfway

point. Finally, we call fread() to extract the second half of the file, printing the result

to the browser.

Reading Characters from a File with fgetc()

fgetc() is similar to fgets() except that it returns only a single character from a file

every time it is called. Because a character is always 1 byte in size, fgetc() doesn't

require a length argument. You simply need to pass it a file pointer:

$char = fgetc($fp);

Listing 10.12 creates a loop that reads the file "test.txt" a character at a time,

outputting each character to the browser on its own line.

Listing 10.12: Moving Around a File with fseek()

 1: <html>

 2: <head>

 3: <title>Listing 10.12 Moving around a file with fseek()</title>

 4: </head>

 5: <body>

 6: <?php

 7: $filename = "test.txt";

 8: $fp = fopen($filename, "r") or die("Couldn't open $filename");

 9: while (! feof($fp))

10: {

11: $char = fgetc($fp);

12: print "$char
";

13: }

14: ?>

15: </body>

 189

16: </html>

Writing or Appending to a File

The processes for writing to or appending to a file are the same. The difference lies

in the fopen() call. When you write to a file, you should use the mode argument "w"

when you call fopen():

$fp = fopen("test.txt", "w");

All subsequent writing will occur from the start of the file. If the file doesn't already

exist, it will be created. If the file already exists, any prior content will be destroyed

and replaced by the data you write.

When you append to a file, you should use mode "a" in your fopen() call:

$fp = fopen("test.txt", "a");

Any subsequent writes to your file are added to the existing content.

Writing to a File with fwrite() or fputs()

fwrite() accepts a file pointer and a string. It then writes the string to the file. fputs()

works in exactly the same way.

fwrite($fp, "hello world");

fputs($fp, "hello world");

Writing to files is as straightforward as that. Listing 10.13 uses fwrite() to print to a

file. We then append a further string to the same file using fputs().

Listing 10.13: Writing and Appending to a File

 1: <html>

 2: <head>

 3: <title>Listing 10.13 Writing and appending to a file</title>

 4: </head>

 5: <body>

 6: <?php

 7: $filename = "test.txt";

 8: print "Writing to $filename
";

 190

 9: $fp = fopen($filename, "w") or die("Couldn't open $filename");

10: fwrite($fp, "Hello world\n");

11: fclose($fp);

12: print "Appending to $filename
";

13: $fp = fopen($filename, "a") or die("Couldn't open $filename");

14: fputs($fp, "And another thing\n");

15: fclose($fp);

16: ?>

17: </body>

18: </html>

Locking Files with flock()

The techniques you have learned for reading and amending files will work fine if you

are only presenting your script to a single user. In the real world, however, you

would expect many users to access your projects more or less at the same time.

Imagine what would happen if two users were to execute a script that writes to one

file at the same moment. The file will quickly become corrupt.

PHP4 provides the flock() function to forestall this eventuality. flock() will lock a file

to warn other process against writing to or reading from a file while the current

process is working with it. flock() requires a valid file pointer, and an integer

representing the kind of lock you would like to set. In Table 10.1 we list three kinds

of locks you can apply to a file.

Table 10.1: Integer Arguments to the flock() Function

Integer Lock Type Description

1 Shared Allows other

processes to

read the file but

prevents

writing (used

when reading a

file)

 191

2 Exclusive Prevents other

processes from

either reading

from or writing

to a file (used

when writing to

a file)

3 Release Releases a

shared or

exclusive lock

You should call flock() directly after calling fopen() and then call it again to release

the lock before closing the file.

$fp = fopen("test.txt", "a");

flock($fp, 2); // exclusive lock

// write to the file

flock($fp, 1); // release the lock

fclose($fp);

 Caution Locking with flock() is advisory. Only other scripts that use flock()

will respect a lock that you set.

Working with Directories

Now that you can test, read, and write to files, turn your attention to directories.

PHP provides many functions to work with directories. You will look at how to create,

remove, and read them.

Creating Directories with mkdir()

mkdir() enables you to create a directory. mkdir() requires a string representing the

path to the directory you want to create and an integer that should be an octal

number representing the mode you want to set for the directory. You specify an

octal (base 8) number with a leading 0. The mode argument will only have an effect

on UNIX systems. The mode should consist of three numbers between 0 and 7,

representing permissions for the directory owner, group, and everyone,

 192

respectively. This function returns true if it successfully creates a directory, or false

if it doesn't. If mkdir() fails, this will usually be because the containing directory has

permissions that preclude processes with the script's user ID from writing.

mkdir("testdir", 0777); // global read/write/execute permissions

Removing a Directory with rmdir()

rmdir() enables you to remove a directory from the file system, if the process

running your script has the right to do so, and if the directory is empty. rmdir()

requires only a string representing the path to the directory you want to create.

rmdir("testdir");

Opening a Directory for Reading with opendir()

Before you can read the contents of a directory, you must first obtain a directory

pointer. You can do this with the opendir() function. opendir() requires a string

representing the path to the directory you want to open. opendir() returns a

directory handle unless the directory is not present or readable, in which case it

returns false.

$dh = opendir("testdir");

Reading the Contents of a Directory with readdir()

Just as you use gets() to read a line from a file, you can use readdir() to read a file

or directory name from a directory. readdir() requires a directory handle and

returns a string containing the item name. If the end of the directory has been

reached, readdir() returns false. Note that readdir() returns only the names of its

items, rather than full paths. Listing 10.14 shows the contents of a directory.

Listing 10.14: Listing the Contents of a Directory with readdir()

 1: <html>

 2: <head>

 3: <title>Listing 10.14 Listing the contents

 4: of a directory with readdir()</title>

 5: </head>

 193

 6: <body>

 7: <?php

 8: $dirname = "testdir";

 9: $dh = opendir($dirname);

10: while (gettype($file = readdir($dh)) != boolean)

11: {

12: if (is_dir("$dirname/$file"))

13: print "(D)";

14: print "$file
";

15: }

16: closedir($dh);

17: ?>

18: </body>

19: </html>

We open our directory for reading with the opendir() function and use a while

statement to loop through each of its elements. We call readdir() as part of the while

statement's test expression, assigning its result to the $file variable. Within the

body of the while statement, we use the $dirname variable in conjunction with the

$file variable to create a full file path, which we can then test. If the path leads to a

directory, we print "(D)" to the browser. Finally, we print the filename.

We have used a cautious construction in the test of the while statement. Most PHP

programmers (myself included) would use something like the following:

while ($file = readdir($dh))

 {

 print "$file
\n";

 }

The value returned by readdir() will be tested. Because any string other than "0" will

resolve to true, there should be no problem. Imagine, however, a directory that

contains four files, "0", "1", "2", and "3". The output from the preceding code on my

system is as follows:

 194

When the loop reaches the file named "0", the string returned by readdir() resolves

to false, causing the loop to end. The approach in Listing 10.14 tests the type of the

value returned by the readdir() function, thus circumventing the problem.

Summary

In this hour, you learned how to use include() to incorporate files into your

documents and to execute any PHP code contained in include files. You learned how

to use some of PHP's file test functions. You explored functions for reading files by

the line, by the character, or in arbitrary chunks. You learned how to write to files,

either replacing or appending to existing content. Finally, you learned how to create,

remove, and read directories.

Q&A
Q Will the include() function slow down my scripts?

A Because an included file must be opened and parsed by the interpreter, it will add

some overhead. The effect should be negligible, however.

Q Should I always end script execution if a file cannot be opened for

writing or reading?

A You should always allow for this possibility. If your script absolutely depends on

the file you want to work with, you might want to use the die() function, writing an

informative error message to the browser. In less critical situations, you will still

need to allow for the failure, perhaps adding it to a log file. You can read more about

logging in Hour 22, "Debugging."

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

What functions could you use to add library code to the currently running script?

What function would you use to find out whether a file is present on your file

system?

How would you determine the size of a file?

 195

What function would you use to open a file for reading or writing?

What function would you use to read a line of data from a file?

How can you tell when you have reached the end of a file?

What function would you use to write a line of data to a file?

How would you open a directory for reading?

What function would you use to read the name of a directory item after you have

opened a directory for reading?

Activities

Create a form that accepts a user's first and second name. Create a script that

saves this data to a file.

Create a script that reads the data file you created in activity 1. As well as writing

its contents to the browser (adding a
 tag to each line), print a summary

that includes the number of lines in the file and the file's size.

 196

Hour 11: Working with the DBM

Functions

Overview

If you don't have access to a SQL database such as MySQL or Oracle, you will almost

certainly have a DBM-style database system available to you. Even if you don't have

such a library on your system, PHP can emulate the functionality for you. Essentially,

the DBM functions allow you to store and manipulate name/value pairs on your

system.

Although these functions do not offer you the power of a SQL database, they are

flexible and easy to use. Because the format is so common, code written to take

advantage of these functions is likely to be portable, although the DBM files

themselves might not be.

In this hour, you will learn

How to open a DBM database

How to add data to the database

How to extract data from the database

How to change and delete items

How to store more complex kinds of data in DBM databases

Opening a DBM Database
You can open a DBM database with the function dbmopen(). This function requires

two arguments: the path to a DBM file and a string containing the flags with which

you want to open the database. dbmopen() returns a special DBM identifier that you

can then pass to other DBM functions to access or manipulate your database.

Because dbmopen() involves reading from and writing to files, PHP must have

permission to write to the directory that will contain your database.

The flags that you pass to dbmopen() determine the way in which you can work with

your database. They are listed in Table 11.1

Table 11.1: Flags for Use with dbmopen()

Flag Description

 197

r Open database

reading only

w Open database for

writing and

reading

c Create database

(or open for

read/write access

if it exists)

n Create new

database

(truncate old

version if it exists)

The following code fragment opens a database, creating a new one if it does not

already exist:

$dbh = dbmopen("./data/products", "c") or die("Couldn't open DBM");

Notice that we use a die() statement to end script execution if our attempt to open

the database fails.

When you finish working with a database, close it using the function dbmclose().

This is because PHP locks a database that you are working with so that other

processes cannot attempt to modify the data you are reading or writing. If you don't

close the database, then other processes are going to have to wait longer before

getting their bite of the cherry. dbmclose() requires a valid DBM identifier:

dbmclose ($dbh);

Adding Data to the Database
You can add name/value pairs to your open database with the function dbminsert(),

which requires a valid DBM identifier (as returned by dbmopen()), the name of a key,

and the value that you want to store. This function returns 0 if all is well, 1 if the

element already exists in the database, and − 1 if an error occurs (such as an

attempt to write to a database opened in read-only mode). If the element you are

attempting to insert already exists, then the data is not overwritten.

Listing 11.1 creates or opens a database called products and adds some data to it.

Listing 11.1: Adding Items to a DBM Database

 1: <html>

 2: <head>

 3: <title>Listing 11.1 Adding items to a DBM database</title>

 4: </head>

 198

 5: <body>

 6: Adding products now...

 7:

 8: <?php

 9: $dbh = dbmopen("./data/products", "c") or die("Couldn't open DBM");

10:

11: dbminsert($dbh, "Sonic Screwdriver", "23.20");

12: dbminsert($dbh, "Tricorder", "55.50");

13: dbminsert($dbh, "ORAC AI", "2200.50");

14: dbminsert($dbh, "HAL 2000", "4500.50");

15:

16: dbmclose($dbh);

17: ?>

18: </body>

19: </html>

All values are converted to strings when added to the database, so we add quotes to

the product prices to maintain their format. We can treat these strings as doubles

when we extract them from the database if we need to. Notice also that we can use

keys that have more than one word.

If we now attempt to call dbminsert() with the same key argument as one of the

keys we have already used, dbminsert() returns 1 and makes no change to the

database. In some circumstances, this might be what you want, but in others, you

will want to amend existing data, as well as create new elements.

Amending Elements in a Database
You can amend an entry in a DBM database with the dbmreplace() function.

dbmreplace() requires a valid DBM identifier, the name of a key, and the new value

to add. It returns 0 if all goes well and − 1 if an error occurs. Listing 11.2 amends the

code in Listing 11.1 so that keys are added regardless of existence.

Listing 11.2: Adding or Changing Items to a DBM Database

 1: <html>

 2: <head>

 3: <title>Listing 11.2 Adding or changing items to a DBM database</title>

 4: </head>

 5: <body>

 6: Adding products now...

 7: <?php

 199

 8: $dbh = dbmopen("./data/products", "c")

 9: or die("Couldn't open DBM");

10: dbmreplace($dbh, "Sonic Screwdriver", "25.20");

11: dbmreplace($dbh, "Tricorder", "56.50");

12: dbmreplace($dbh, "ORAC AI", "2209.50");

13: dbmreplace($dbh, "HAL 2000", "4535.50");

14: dbmclose($dbh);

15: ?>

16: </body>

17: </html>

We have only had to change the function calls from dbminsert() to dbmreplace() to

change the functionality of the script.

Reading from a DBM Database
Now that we can add data to our database, we need to find a way to fetch it. We can

extract an individual element from the database with the dbmfetch() function.

dbmfetch() requires a valid DBM identifier and the name of the element you want to

access. The function returns the value you are accessing as a string. So to access

the price of the "Tricorder" item, we would use the following code:

$price = dbmfetch($dbh, "Tricorde");

If the "Tricorder" element does not exist in the database, then dbmfetch() returns

an empty string.

You won't always know the names of all the keys in the database, however. What

would you do if you needed to output every product and price to the browser without

hard-coding the product names into your script? PHP provides a mechanism by

which you can loop through every element in a database.

You can get the first key in a database with the dbmfirstkey() function. This requires

a DBM identifier and returns the first key. Note that this won't necessarily be the

first element that you added because DBM databases often maintain their own

ordering systems. After you've retrieved the first key, you can access each

subsequent key with the dbmnextkey() function. Once again dbmnextkey()

requires a DBM identifier and returns an element's key. By combining these

functions with dbmfetch(), you can now list an entire database.

Listing 11.3 outputs the products database to the browser.

Listing 11.3: Reading All Records from a DBM Database

 1: <html>

 2: <head>

 200

 3: <title>Listing 11.3 Reading all

 4: records from a DBM Database </title>

 5: </head>

 6: <body>

 7: Here at the Impossible Gadget Shop

 8: we're offering the following exciting

 9: products:

10: <p>

11: <table border=1 cellpadding ="5">

12: <tr>

13: <td align="center"> product</td>

14: <td align="center"> price </td>

15: </tr>

16: <?php

17: $dbh = dbmopen("./data/products", "c")

18: or die("Couldn't open DBM");

19: $key = dbmfirstkey($dbh);

20: while ($key != "")

21: {

22: $value = dbmfetch($dbh, $key);

23: print "<tr><td align = \"left\"> $key </td>";

24: print "<td align = \"right\"> \$$value </td></tr>";

25: $key = dbmnextkey($dbh, $key);

26: }

27: dbmclose($dbh);

28: ?>

29: </table>

30: </body>

31: </html>

Figure 11.1 shows the output from Listing 11.3.

 201

Figure 11.1: Reading all records from a DBM database.

Determining Whether an Item Exists in a Database

Before reading or setting an element in a DBM database, it is sometimes useful to

know whether the element exists. You can do this with the dbmexists() function.

dbmexists() requires a valid DBM identifier and the name of the element for which

you are testing. It returns true if the element exists.

if (dbmexists($dbh, "Tricorder"))

 print dbmfetch($dbh, "Tricorder");

Deleting an Item from a Database

You can delete an item from a database using the dbmdelete() function. dbmdelete()

requires a valid DBM identifier and the name of the element you want to remove

from the database. It returns true if the item was successfully deleted, and false if

the element did not exist to be deleted.

dbmdelete($dbh, "Tricorder");

Adding Complex Data Structures to a DBM Database
All data in a DBM database is extracted in string format, so you are limited to storing

integers, strings, and doubles. Any other data type will be lost. Let's try to store an

array, for example:

$array = array(1, 2, 3, 4);

$dbh = dbmopen("./data/test", "c") or die("Couldn't open test DBM");

 202

dbminsert($dbh, "arraytest", $array);

print gettype(dbmfetch($dbh, "arraytest"));

// prints "string"

We create an array and store it in the variable $array. We then open a database and

attempt to insert an element called "arraytest", passing it the $array variable as the

value. We then test the return type from dbmfetch() when attempting to access

"arraytest" and ascertain that a string has been returned. In fact, if we printed the

value stored in the "arraytest" record, we would get the string "Array". That would

seem to wrap up any hopes for storing arrays and objects.

Fortunately, PHP provides a feature that allows you to "freeze-dry" values of any

data type in string format. The data can then be stored in a database or file until it

is needed. You can use this technique to store arrays and even objects in a DBM

database.

To convert the array in the previous example to a string, we must use the serialize()

function. serialize() requires a value of any type and returns a string:

$array = array(1, 2, 3, 4);

print serialize($array);

// prints a:4:{i:0;i:1;i:1;i:2;i:2;i:3;i:3;i:4;}

We can now store this string in the DBM database. When we want to resurrect it, we

can use the unserialize() function. unserialize() requires a serialized string and

returns a value of the appropriate data type.

This allows you to store complex data structures within the relatively simple format

allowed by DBM databases. Listing 11.4 serializes an associative array for each of

the items in our list of products and adds the result to our database.

Listing 11.4: Adding Complex Data to a DBM Database

 1: <html>

 2: <head>

 3: <title>Listing 11.4 Adding complex data to a DBM database</title>

 4: </head>

 5: <body>

 6: Adding complex data to database

 7: <?php

 8: $products = array(

 9: "Sonic Screwdriver" => array(price=>"22.50",

10: shipping=>"12.50",

11: color=>"green"),

12: "Tricorder" => array(price=>"55.50",

13: shipping=>"7.50",

 203

14: color=>"red"),

15: "ORAC AI" => array(price=>"2200.50",

16: shipping=>"34.50",

17: color=>"blue"),

18: "HAL 2000" => array(price=>"4500.50",

19: shipping=>"18.50",

20: color=>"pink")

21:);

22: $dbh = dbmopen("./data/newproducts", "c")

23: or die("Couldn't open products DBM");

24: while (list ($key, $value) = each ($products))

25: dbmreplace($dbh, $key, serialize($value));

26: dbmclose($dbh);

27: ?>

28: </table>

29: </body>

30: </html>

We build a multidimensional array, containing the product names as keys and four

arrays of product information as values. We then open the database and loop

through the array. For each element, we pass the product name and a serialized

version of the product array to dbmreplace(). We then close the database.

Listing 11.5 writes the code that extracts this data.

Listing 11.5: Retrieving Serialized Data from a DBM Database

 1: <html>

 2: <head>

 3: <title>Listing 11.5 Retrieving serialized

 4: data from a DBM database</title>

 5: </head>

 6: <body>

 7: Here at the Impossible Gadget Shop

 8: we're offering the following exciting

 9: products:

10: <p>

11: <table border=1 cellpadding ="5">

12: <tr>

13: <td align="center"> product</td>

14: <td align="center"> color </td>

 204

15: <td align="center"> shipping </td>

16: <td align="center"> price </td>

17: </tr>

18: <?php

19: $dbh = dbmopen("./data/newproducts", "c")

20: or die("Couldn't open test DBM");

21: $key = dbmfirstkey($dbh);

22: while ($key != "")

23: {

24: $prodarray = unserialize(dbmfetch($dbh, $key));

25: print "<tr><td align=\"left\"> $key </td>";

26: print "<td align=\"left\">$prodarray[color] </td>\n";

27: print "<td align=\"right\">\$$prodarray[shipping] </td>\n";

28: print "<td align=\"right\">\$$prodarray[price] </td></tr>\n";

29: $key = dbmnextkey($dbh, $key);

30: }

31: dbmclose($dbh);

32: ?>

33: </table>

34: </body>

35: </html>

Listing 11.5 is similar to the example in Listing 11.3. In this case though, we are

displaying more fields. We open the database and then use dbmfirstkey() and

dbmnextkey() to loop through each item in the database. We extract the value and

use unserialize() to reconstruct the product array. It is then simple to print each

element of the product array to the browser. Figure 11.2 shows the output from

Listing 11.5.

 205

Figure 11.2: Retrieving serialized data from a DBM database.

An Example
We now have enough information to build an example using some of the techniques

discussed in this hour. Our brief is to build an administration page to enable a site

editor to change the prices in the products database created in Listing 11.2. The

administrator should also be able to remove elements from the database and add

new ones. The page will not be hosted on a publicly available server, so security is

not a problem for this project.

First, we must build a form that incorporates all the elements in the database. The

user will be able to change any price using a text field and choose which items to

delete using a check box. She will also have two text fields for adding a new item to

the database. Listing 11.6 shows the code to create the form.

Listing 11.6: Building an HTML Form Based on Content from a DBM

Database

 1: <?

 2: $dbh = dbmopen("./data/products", "c")

 3: or die("Couldn't open test DBM");

 4: ?>

 5: <html>

 6: <head>

 7: <title>Listing 11.6 Building an html form based

 8: on content from a DBM database</title>

 9: </head>

10: <body>

11: <form action="POST">

 206

12: <table border="1">

13: <tr>

14: <td>delete</td>

15: <td>product</td>

16: <td>price</td>

17: </tr>

18: <?php

19: $key = dbmfirstkey($dbh);

20: while ($key != "")

21: {

22: $price = dbmfetch($dbh, $key);

23: print "<tr><td><input type='checkbox' name=\"delete[]\" ";

24: print "value=\"$key\"></td>";

25: print "<td>$key</td>";

26: print "<td> <input type=\"text\" name=\"prices[$key]\" ";

27: print "value=\"$price\"> </td></tr>";

28: $key = dbmnextkey($dbh, $key);

29: }

30: dbmclose($dbh);

31: ?>

32: <tr>

33: <td> </td>

34: <td><input type="text" name="name_add"></td>

35: <td><input type="text" name="price_add"></td>

36: </tr>

37: <tr>

38: <td colspan=3 align="right">

39: <input type="submit" value="amend">

40: </td>

41: </tr>

42: </table>

43: </form>

44: </body>

45: </html>

We start by opening the database as usual. We then begin an HTML form that points

back to the current page using PHP's $PHP_SELF variable.

Having written some table headers to the screen, we loop through the contents of

 207

our database using dbmfirstkey() and dbmnextkey() to get each key in turn, and

dbmfetch() to extract the value.

In the first table cell of each row, we create a check box. Notice that we give all

these the name "delete[]". This instructs PHP to construct an array called $delete of

all submitted values that share this name. We use the database element name

(stored in $key) as the value for each check box. When the form is submitted,

therefore, we should have a $delete array with the names of all the database

elements that we want to delete.

We then print the element name to the browser and create another text field. This

field presents the product price to the user, ready for amendment. We name the

field using a similar technique as we did for the previous field. This time, however,

we include the name of the database element in the square brackets of the field

name. PHP constructs an associative array called $prices from these submitted

fields with the DBM element names as keys.

We close the database and revert to HTML mode to write the final fields. These allow

the user to add new product and price combinations. Only two fields are required,

and we give them the names name_add and price_add.

Figure 11.3 shows the output from Listing 11.6.

Figure 11.3: Building an HTML form based on content from a DBM database.

Now that we have created the form, we need to write code to deal with the user

input. This is not as difficult as it sounds. There are three possible actions we can

take. First, we can delete items from the database; second, we can amend prices in

the database; and third, we can add new elements to the database.

If the form has been submitted, we know which items we need to delete because a

$delete array variable will have been made available. We need to loop through this

array and delete the elements whose names it contains.

 208

if (isset ($delete))

 {

 while (list ($key, $val) = each ($delete))

 {

 unset($prices[$val]);

 dbmdelete($dbh, $val);

 }

}

First we test that the $delete variable is set. If the user has only just arrived at the

page, or if she has not chosen to delete any items, the variable will not exist. If the

variable exists, we can go ahead and loop through it. For each string held in the

$delete array, we call dbmdelete() removing the element by that name from the

database. We also interfere with another array variable. The $prices array contains

all the key value pairs in the database, although some of the values might have

been changed by the user. If we do not remove the elements, we delete from the

database the $price array as well. The next block of code adds them to the database

once again.

To update the database according to the user amendments, we have a choice. We

could only update those elements that the user has elected to change. We would

choose this option if we expected many users to be using the script at the same time.

As it is, this script will be run by a single administrator, so we opt to update every

element in the database:

if (isset ($prices))

 {

 while (list ($key, $val) = each ($prices))

 dbmreplace($dbh, $key, $val);

 }

We test for the existence of the $prices array. This should contain a new version of

the entire database. We loop through the array, calling dbmreplace() for each of its

elements.

Finally, we need to check whether the user has submitted a new product for

inclusion in the database:

if (! empty($name_add) && ! empty($price_add))

 dbmreplace($dbh, "$name_add", "$price_add");

Instead of testing whether the $name_add and $price_add variables are set, we

test whether they are empty. This is a subtle but important difference. When the

user submits the form we have built, these variables will always be set. They may,

 209

however, contain empty strings. We do not want to add empty strings to our

database, so we only execute the code to insert new values if neither variable is

empty:

if (! empty($name_add) && ! empty($price_add))

 dbmreplace($dbh, "$name_add", "$price_add");

We use dbminsert() rather than dbmreplace() to guard against the user

inadvertently overwriting an element that has already been defined.

You can see the complete code in Listing 11.7.

Listing 11.7: The Complete Product Maintenance Code

 1: <?php

 2: $dbh = dbmopen("./data/products", "c")

 3: or die("Couldn't open test DBM");

 4:

 5: if (isset ($delete))

 6: {

 7: while (list ($key, $val) = each ($delete))

 8: {

 9: unset($prices[$val]);

10: dbmdelete($dbh, $val);

11: }

12: }

13:

14: if (isset ($prices))

15: {

16: while (list ($key, $val) = each ($prices))

17: dbmreplace($dbh, $key, $val);

18: }

19:

20: if (! empty($name_add) && ! empty($price_add))

21: dbminsert($dbh, "$name_add", "$price_add");

22: ?>

23:

24: <html>

25: <head>

26: <title>Listing 11.7 The complete product maintenance code</title>

27: </head>

28: <body>

29:

 210

30: <form action="<? print $PHP_SELF; ?>" action="POST">

31:

32: <table border="1">

33: <tr>

34: <td>delete</td>

35: <td>product</td>

36: <td>price</td>

37: </tr>

38:

39: <?php

40: $key = dbmfirstkey($dbh);

41: while ($key != "")

42: {

43: $price = dbmfetch($dbh, $key);

44: print "<tr><td><input type='checkbox' name=\"delete[]\" ";

45: print "value=\"$key\">$/td>";

46: print "<td>$key</td>";

47: print "<td> <input type=\"text\" name=\"prices[$key]\" ";

48: print "value=\"$price\"> </td></tr>";

49: $key = dbmnextkey($dbh, $key);

50: }

51:

52: dbmclose($dbh);

53: ?>

54:

55: <tr>

56: <td> </td>

57: <td><input type="text" name="name_add"></td>

58: <td><input type="text" name="price_add"></td>

59: </tr>

60:

61: <tr>

62: <td colspan=3 align="right">

63: <input type="submit" value="amend">

64: </td>

65: </tr>

66:

67: </table>

 211

68: </form>

69:

70: </body>

71: </html>

Summary

In this hour, you learned how to use PHP's powerful DBM functions to store and

retrieve data. You learned how to use dbmopen() to acquire a DBM identifier, which

you can use with other DBM functions. You learned how to add data to a database

with dbminsert(), alter it with dbmreplace(), and delete data with dbmdelete(). You

learned how to use dbmfetch() to retrieve data. You learned how to use serialize()

and unserialize() to save complex data structures to a DBM database. Finally, you

worked through an example that uses many of the techniques we have examined.

Q&A

Q When should I use a DBM database as opposed to a SQL database?

A A DBM database is a good option when you want to store small amounts of

relatively simple data (typically name/value pairs). Scripts built to use a DBM

database have the virtue of portability. If you intend to store large amounts of data

or many fields, consider using a SQL database, such as MySQL.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

What function would you use to open a DBM database?

What function would you use to insert a record into a DBM database?

What function would you use to replace a record in a DBM database?

How would you access a record from a DBM database by name?

 212

How would you get the name (as opposed to the value) of the first element in a

DBM database?

How would you get subsequent element names?

How would you delete a named element from a DBM database?

Activities

Create a DBM database to keep track of user names and passwords. Create a

script that allows users to register their combinations. Don't forget to check for

duplications.

Create an authentication script that checks a user name and password. If the

user input matches an entry in the database, present the user with a special

message. Otherwise, represent the login form to the user.

 213

Hour 12: Database Integration— MySQL

Overview

One of the defining features of PHP is the ease with which you can connect to and

manipulate databases. In this hour, we will concentrate on MySQL, but you will find

similar functions for many of the databases that PHP supports. Why MySQL? It fits

well with the spirit of PHP in that it is free to the individual user, yet remains a

powerful tool that can be used as the basis of demanding real-world projects.

Furthermore, versions of MySQL are available for multiple platforms. You can

download MySQL from http://www.mysql.org. In this hour, you will learn

A few SQL samples

How to connect to the MySQL database server

How to select a database

About error handling

How to add data to a table

How to retrieve data from a table

How to alter data in a table

About the structure of databases

A (Very) Brief Introduction to SQL
 NEW

TERM

SQL stands for Structured Query Language. It provides a

standardized syntax by which different types of database can be

queried. Most SQL database products provide their own extensions to

the language, just as many browsers provide their own extensions to

HTML. Nonetheless, an understanding of SQL enables you to work

with a wide range of database products across multiple platforms.

This book cannot even begin to describe the intricacies of SQL. Nonetheless, we can

fill in some background about MySQL and SQL in general.

MySQL runs as a server daemon to which users on the same or even remote

machines can connect. Once connected to the server, you can select a database if

you have the privileges to do so.

Within a database, there will be a varying number of tables of data. Each table is

arranged in rows and columns. The intersection between a row and a column is the

point at which each item of data you want to store and access sits. Each column only

 214

accepts a predefined type of data, INT for integer, for example, or VARCHAR for a

variable number of characters up to a defined limit.

To create a new table within a database we have selected, we might use a SQL

query like the following:

CREATE TABLE mytable (first_name VARCHAR(30), second_name VARCHAR(30),

age INT);

Our new table has three columns. first_name and second_name can contain strings

of up to 30 characters. age can contain any integer.

To add data to this table, we could use an INSERT statement:

INSERT INTO mytable (first_name, second_name, age) VALUES ('John', 'Smith',

36

);

The field names to which we want to add data are defined in the first set of

parentheses. The values we want to insert are defined in the second.

To acquire all the data in a table, we would use a SELECT statement:

SELECT * FROM mytable;

The "*" symbol represents a wildcard which means "all fields." To acquire the

information from a single field, you can use the column name in place of the

wildcard:

SELECT age FROM mytable;

To change the values already stored in a table, you can use an UPDATE statement:

UPDATE mytable SET first_name = 'Bert';

This changes the first_name field in every row to "Bert". We can narrow the focus of

SELECT and UPDATE statements with a WHERE clause. For example,

SELECT * FROM mytable WHERE first_name = 'Bert';

returns only those rows whose first_name fields contain the string "Bert". This next

example

UPDATE mytable SET first_name = "Bert" WHERE second_name = "Baker";

changes the first_name fields of all rows whose second_name fields contain

"Baker".

For more information on SQL, see Sams Teach Yourself SQL in 21 Days by Ryan K.

Stephens et. al.

Connecting to the Database Server

Before you can begin working with your database, you must first connect to the

server. PHP provides the mysql_connect() function to do just this. mysql_connect()

does not require any arguments but accepts up to three strings: the hostname, a

 215

usename, and a password. If you omit any or all of these arguments, the function

assumes localhost as the host and that no password or username has been set up in

the mysqluser table, unless defaults have been set up in the php.ini file. Naturally,

this is unwise for anything but a test database, so we will always include a username

and password in our examples. mysql_connect() returns a link identifier if the

connection is successful. You can store this return value in a variable so that you can

continue to work with the database server.

The following code fragment uses mysql_connect() to connect to the MySQL

database server:

$link = mysql_connect("localhost", "root", "n1ckel");

if (! $link)

 die("Couldn't connect to MySQL");

If you are using PHP in conjunction with Apache, you could also connect to the

database server with mysql_pconnect(). From the coder's perspective, this function

works in exactly the same way as mysql_connect(). In fact, there is an important

difference. If you use this function, the connection does not die when your script

stops executing or if you call mysql_close() (which ends a standard connection to

the MySQL server). Instead, the connection is left active, waiting for another

process to call mysql_pconnect(). In other words, the overhead of opening a new

connection to the server can be saved if you use mysql_pconnect() and a previous

call to the script has left the connection open.

Selecting a Database

Now that we have established a connection to the MySQL daemon, we must choose

which database we want to work with. You can select a database with the

mysql_select_db() function. mysql_select_db() requires a database name and

optionally accepts a link identifier. If you omit this, the identifier returned from the

last connection to the server will be assumed. mysql_select_db() returns true if the

database exists and you are able to access it. In the following fragment, we select a

database called sample.

$database = "sample";

mysql_select_db($sample) or die ("Couldn't open $sample);

Finding Out About Errors

 216

So far we have tested the return values of the MySQL functions that we have used

and called die() to end script execution if a problem occurs. You might, however,

want to print more informative error messages to the browser to aid debugging.

MySQL sets an error number and an error string whenever an operation fails. You

can access the error number with mysql_errno(), and the error string with

mysql_error(). Listing 12.1 brings our previous examples together into a simple

script that connects to the server and selects a database. We use mysql_error() to

make our error messages more useful.

Listing 12.1: Opening a Connection and Selecting a Database

 1: <html>

 2: <head>

 3: <title>Listing 12.1 Opening a connection and

 4: selecting a database</title>

 5: </head>

 6: <body>

 7: <?php

 8: $user = "harry";

 9: $pass = "elbomonkey";

10: $db = "sample";

11: $link = mysql_connect("localhost", $user, $pass);

12: if (! $link)

13: die("Couldn't connect to MySQL");

14: print "Successfully connected to server<P>";

15: mysql_select_db($db)

16: or die ("Couldn't open $db: ".mysql_error());

17: print "Successfully selected database \"$db\"<P>";

18: mysql_close($link);

19: ?>

20: </body>

21: </html>

If we change the value of the $db variable to "notthere", we will be attempting to

open a nonexistent database. The output of our die() function call will look

something like the following:

Couldn't open sample2: Access denied for user: 'harry@localhost' to database

'sample2'

Adding Data to a Table

 217

Now that we have access to our database, we can add information to one of its

tables. For the following examples, imagine that we are building a site that allows

people to buy domain names.

We have created a table within the sample database called domains. The table was

created with five columns: a primary key field called id that will automatically

increment an integer as data is added, a domain field that will contain a variable

number of characters (VARCHAR), a sex field that will contain a single character,

and a mail field that will contain a user's email address. The following SQL statement

was used in the MySQL client to create the table:

create table domains (id INT NOT NULL AUTO_INCREMENT,

 PRIMARY KEY(id),

 domain VARCHAR(20),

 sex CHAR(1),

 mail VARCHAR(20));

To add data to this table, we will need to construct and execute a SQL query. PHP

provides the mysql_query() function for this purpose. mysql_query() requires a

string containing a SQL query and, optionally, a link identifier. If the identifier is

omitted, the query is sent to the database server to which you last connected.

Mysql_query() returns a positive value if the query is successful. If your query

contains a syntax error, or if you don't have permission to access the database in

question, then query() returns false. Note that a successful query does not

necessarily result in any altered rows. Listing 12.2 extends our previous examples

and uses mysql_query() to send an INSERT statement to the domains table in the

sample database.

Listing 12.2: Adding a Row to a Table

 1: <html>

 2: <head>

 3: <title>Listing 12.2 Adding a row to a table</title>

 4: </head>

 5: <body>

 6: <?php

 7: $user = "harry";

 8: $pass = "elbomonkey";

 9: $db = "sample";

10: $link = mysql_connect("localhost", $user, $pass);

11: if (! $link)

12: die("Couldn't connect to MySQL");

13: mysql_select_db($db, $link)

 218

14: or die ("Couldn't open $db: ".mysql_error());

15: $query = "INSERT INTO domains (domain, sex, mail)

16: values('123xyz.com', 'F', 'sharp@adomain.com')";

17: mysql_query($query, $link)

18: or die ("Couldn't add data to \"domains\" table: "

19: .mysql_error());

20: mysql_close($link);

21: ?>

22: </body>

23: </html>

Notice that we did not insert a value for the id column. This field will auto-increment.

Of course, every time we reload the script in Listing 12.2, the same data is added to

a new row. Listing 12.3 creates a script that will enter user input into our database.

Listing 12.3: Adding User Input to a Database

 1: <html>

 2: <head>

 3: <title>Listing 12.3 Adding user input to a database</title>

 4: </head>

 5: <body>

 6: <?php

 7: if (isset($domain) && isset($sex) && isset($domain))

 8: {

 9: // check user input here!

10: $dberror = "";

11: $ret = add_to_database($domain, $sex, $mail, $dberror);

12: if (! $ret)

13: print "Error: $dberror
";

14: else

15: print "Thank you very much";

16: }

17: else {

18: write_form();

19: }

20:

21: function add_to_database($domain, $sex, $mail, &$dberror)

22: {

23: $user = "harry";

 219

24: $pass = "elbomonkey";

25: $db = "sample";

26: $link = mysql_pconnect("localhost", $user, $pass);

27: if (! $link)

28: {

29: $dberror = "Couldn't connect to MySQL server";

30: return false;

31: }

32: if (! mysql_select_db($db, $link))

33: {

34: $dberror = mysql_error();

35: return false;

36: }

37: $query = "INSERT INTO domains (domain, sex, mail)

38: values('$domain', '$sex', '$mail')";

39: if (! mysql_query($query, $link))

40: {

41: $dberror = mysql_error();

42: return false;

43: }

44: return true;

45: }

46:

47: function write_form()

48: {

49: global $PHP_SELF;

50: print "<form action=\"$PHP_SELF\" method=\"POST\">\n";

51: print "<input type=\"text\" name=\"domain\"> ";

52: print "The domain you would like<p>\n";

53: print "<input TYPE=\"text\" name=\"mail\"> ";

54: print "Your mail address<p>\n";

55: print "<select name=\"sex\">\n";

56: print "\t<option value=\"F\"> Female\n";

57: print "\t<option value=\"M\"> Male\n";

58: print "</select>\n";

59: print "<input type=\"submit\" value=\"submit!\">\n</form>\n";

60: }

61: ?>

 220

62: </body>

63: </html>

To keep the example brief, we have left out one important process in Listing 12.3.

We are trusting our users. We should in fact check any kind of user input. We deal

with the string functions that help you test user input in Hour 17, "Working with

Strings."

We check for the variables $domain, $sex, and $mail. If they exist, we can be fairly

certain that the user has submitted data, and we call the add_to_database()

function.

The add_to_database() function requires four arguments: the $domain, $sex, and

$mail variables submitted by the user, and a string variable called $dberror. We

populate this last argument with any error strings we encounter. For this reason, we

accept $dberror as a reference to a variable. Any changes made to this string within

the function will change the original argument rather than a copy.

We attempt to open a connection to the MySQL server. If this fails, we assign an

error string to $dberror and end the execution of the function by returning false. We

select the database that contains the domains table and build a SQL query to insert

the user-submitted values. We pass this to mysql_query(), which makes the query

for us. If either mysql_select_db() or mysql_query() fail, we assign the value

returned by mysql_error() to $dberror and return false. Assuming that all went well,

the function returns true.

Back in the calling code, we can test the return value from add_to_database(). If

the function returns true, we can be sure that we have added to the database and

thank the user. Otherwise, we write an error message to the browser. We know that

the $dberror variable that we passed to add_to_database() will now contain useful

information, so we include it in our error message.

If our initial if statement fails to find $domain, $sex, or $mail variables, we can

assume that no data has been submitted and call another user-defined function,

write_form(), which outputs an HTML form to the browser.

Acquiring the Value of an Automatically Incremented
Field

In our previous examples, we have added data to our database without worrying

about the id column, which automatically increments as data is inserted. If we need

the value of this field for a record at a later date, we can always extract it with a SQL

query. What if we need the value straight away, though? It would be wasteful to

 221

look it up. Luckily, PHP provides mysql_insert_id(), a function that returns the value

of an auto-incremented key field after a SQL INSERT statement has been performed.

mysql_insert_id() optionally accepts a link identifier as an argument. With no

arguments, it works with the most recent link established.

So, if we want to tell a user the number we have allocated to her order, we could call

mysql_insert_id() directly after adding the user's data to our database.

$query = "INSERT INTO domains (domain, sex, mail) values('$domain', '$sex',

'$mail')";

mysql_query($query, $link);

$id = mysql_insert_id();

print "Thank you. Your transaction number is $id. Please quote it in any

queries.";

Accessing Information

Now that we can add information to a database, we need to look at strategies for

retrieving the information that it contains. As you might guess, you can use

mysql_query() to make a SELECT query. How do you use this to look at the returned

rows, though? When you perform a successful SELECT query, mysql_query()

returns a result identifier. You can pass this identifier to other functions to access

and gain information about a resultset.

Finding the Number of Rows Found by a Query

You can find the number of rows returned as a result of a SELECT query using the

mysql_num_rows() function. mysql_num_rows() requires a result identifier and

returns a count of the rows in the set. Listing 12.4 uses a SQL SELECT statement to

request all rows in the domains table and then uses mysql_num_rows() to

determine the table's size.

Listing 12.4: Finding the Number of Rows Returned by a SELECT Statement

with mysql_num_rows()

 1: <html>

 2: <head>

 3: <title>Listing 12.4 Using mysql_num_rows()</title>

 222

 4: </head>

 5: <body>

 6: <?php

 7: $user = "harry";

 8: $pass = "elbomonkey";

 9: $db = "sample";

10: $link = mysql_connect("localhost", $user, $pass);

11: if (! $link)

12: die("Couldn't connect to MySQL");

13: mysql_select_db($db, $link)

14: or die ("Couldn't open $db: ".mysql_error());

15: $result = mysql_query("SELECT * FROM domains");

16: $num_rows = mysql_num_rows($result);

17: print "There are currently $num_rows rows in the table<P>";

18: mysql_close($link);

19: ?>

20: </body>

21: </html>

The mysql_query() function returns a result identifier. We then pass this to

mysql_num_rows(), which returns the total number of rows found.

Accessing a Resultset

After you have performed a SELECT query and gained a result identifier, you can use

a loop to access each found row in turn. PHP maintains an internal pointer that

keeps a record of your position within a found set. This moves on to the next row as

each one is accessed.

You can easily get an array of the fields in each found row with mysql_fetch_row().

This function requires a result identifier, returning an array containing each field in

the row. When the end of the found set is reached, mysql_fetch_row() returns false.

Listing 12.5 outputs the entire domains table to the browser.

 223

Listing 12.5: Listing All Rows and Fields in a Table

 1: <html>

 2: <head>

 3: <title>Listing 12.5 Listing all rows and fields in a table</title>

 4: </head>

 5: <body>

 6: <?php

 7: $user = "harry";

 8: $pass = "elbomonkey";

 9: $db = "sample";

10: $link = mysql_connect("localhost", $user, $pass);

11: if (! $link)

12: die("Couldn't connect to MySQL");

13: mysql_select_db($db, $link)

14: or die ("Couldn't open $db: ".mysql_error());

15: $result = mysql_query("SELECT * FROM domains");

16: $num_rows = mysql_num_rows($result);

17: print "There are currently $num_rows rows in the table<P>";

18: print "<table border=1>\n";

19: while ($a_row = mysql_fetch_row($result))

20: {

21: print "<tr>\n";

22: foreach ($a_row as $field)

23: print "\t<td>$field</td>\n";

24: print "</tr>\n";

25: }

26: print "</table>\n";

27: mysql_close($link);

28: ?>

29: </body>

 224

30: </html>

After we have connected to the server and selected the database, we use

mysql_query() to send a SELECT statement to the database server. We store the

returned result pointer in a variable called $result. We use this to acquire the

number of found rows as before.

In the test expression of our while statement, we assign the result of

mysql_fetch_row() to the variable $a_row. Remember that an assignment operator

returns the value of its right-hand operand, so the assignment resolves to true as

long as mysql_fetch_row() returns a positive value. Within the body of the while

statement, we loop through the row array contained in $a_row, outputting each

element to the browser embedded in a table cell.

You can also access fields by name in one of two ways. mysql_fetch_array() returns

a numeric array, as does mysql_fetch_row() It also returns an associative array,

with the names of the fields as the keys. The following fragment rewrites the while

statement from Listing 12.5, incorporating mysql_fetch_array():

print "<TABLE BORDER=1>\n";

while ($a_row = mysql_fetch_array($result))

 {

 print "<TR>\n";

 print "<TD>$a_row[mail]</TD><TD>$a_row[domain]</TD>\n";

 print "</TR>\n";

 }

print "</TABLE>\n";

You can also extract the fields from a row as properties of an object with

mysql_fetch_object(). The field names become the names of the properties. The

following fragment once again rewrites the while statement from Listing 12.5, this

time incorporating mysql_fetch_object():

print "<table border=1>\n";

while ($a_row = mysql_fetch_object($result))

 {

 print "<tr>\n";

 print "<td>$a_row->mail<td><td>$a_row->domain</td>\n";

 225

 print "</tr>\n";

 }

print "</table>\n";

Both mysql_fetch_array() and mysql_fetch_object() make it easier for you to

selectively extract information from a row. Neither of these functions takes much

longer than mysql_fetch_row() to execute.

Changing Data
You can change data using the mysql_query() function in conjunction with an

UPDATE statement. Once again, a successful UPDATE statement does not

necessarily change any rows. You need to use a function to call

mysql_affected_rows() to discover whether you have changed data in your table.

mysql_affected_rows() optionally accepts a link identifier. If this is missing, the

most recent connection is assumed. This function can be used with any SQL query

that can alter data in a table row.

Listing 12.6 builds a script that allows an administrator to change any of the values

in the domain column of our example table.

Listing 12.6: Using mysql_query() to Alter Rows in a Database

 1: <html>

 2: <head>

 3: <title>Listing 12.6 Using mysql_query()

 4: to alter rows in a database</title>

 5: </head>

 6: <body>

 7: <?php

 8: $user = "harry";

 9: $pass = "elbomonkey";

10: $db = "sample";

11: $link = mysql_connect("localhost", $user, $pass);

12: if (! $link)

13: die("Couldn't connect to MySQL");

14: mysql_select_db($db, $link)

15: or die ("Couldn't open $db: ".mysql_error());

16: if (isset($domain) && isset($id))

17: {

18: $query = "UPDATE domains SET domain = '$domain' where id=$id"s;

19: $result = mysql_query($query);

 226

20: if (! $result)

21: die ("Couldn't update: ".mysql_error());

22: print "<h1>Table updated ". mysql_affected_rows() .

23: " row(s) changed</h1><p>";

24: }

25: ?>

26: <form action="<? print $PHP_SELF ?>" method="POST">

27: <select name="id">

28: <?

29: $result = mysql_query("SELECT domain, id FROM domains");

30: while($a_row = mysql_fetch_object($result))

31: {

32: print "<OPTION VALUE=\"$a_row->id\"";

33: if (isset($id) && $id == $a_row->id)

34: print " SELECTED";

35: print "> $a_row->domain\n";

36: }

37: mysql_close($link);

38: ?>

39: </select>

40: <input type="text" name="domain">

41: </form>

42: </body>

43: </html>

We open a connection to the database server and select a database as normal. We

then test for the presence of the variables $domain and $id. If these are present, we

build a SQL UPDATE query that changes the value of the domain field where the id

field contains the same value as our $id variable. We do not get an error if a

nonexistent id is used or if the $domain variable is the same as the current value for

domain in the relevant row. Instead, the mysql_affected_rows() simply returns 0.

We print this return value (usually 1 in this example) to the browser.

We print an HTML form to allow the administrator to make her changes. Note that

we use mysql_query() once again to extract the values of the id and domain column

and incorporate them in an HTML SELECT element. The administrator will use this

pop-up menu to choose which domain to change. If the administrator has already

submitted the form and the id value she chose matches the value of the id field we

are currently outputting, we add the string SELECTED to the OPTION element. This

 227

ensures that her changed value will be instantly visible to her in the menu.

Getting Information About Databases

Until now, we have primarily looked at adding information to and extracting

information from a database. PHP provides a range of functions that allow you to

find out about the number and structure of databases available from the current

connection.

Listing Databases

You can get a list of all databases available from the current connection with the

function mysql_list_dbs(). This function optionally accepts a link identifier and

returns a result identifier that can be used to output all the databases available. To

do this, you can call the function mysql_tablename() for each of the databases

found. mysql_tablename() accepts two arguments: a result pointer and the index of

a database. It returns the name of the database referenced. Databases are indexed

from 0. You can find the total number of databases found by your call to

mysql_list_dbs() by calling mysql_num_rows() with the result identifier returned by

mysql_list_dbs().

Listing 12.7 connects to the MySQL daemon and prints a list of databases to the

browser.

Listing 12.7: Listing the Databases Available in a Connection

 1: <html>

 2: <head>

 3: <title>Listing 12.7 Listing the databases

 4: available in a connection</title>

 5: </head>

 6: <body>

 7: <?php

 8: $user = "harry";

 9: $pass = "elbomonkey";

10: $link = mysql_connect("localhost", $user, $pass);

11: if (! $link)

 228

12: die("Couldn't connect to MySQL");

13: $db_res = mysql_list_dbs($link);

14: $num = mysql_num_rows($db_res);

15: for($x = 0; $x < $num; $x++)

16: print mysql_tablename($db_res, $x)."
";

17: mysql_close($link);

18: ?>

19: </body>

20: </html>

Our call to mysql_list_dbs() gives us a result pointer. We can use the result pointer

to get the total number of items found by passing it to mysql_num_rows() as an

argument. We assign this total to a variable ($num), which we then use in a for

statement.

For each iteration, we pass mysql_tablename() our result pointer and an index

number, $x, which is incremented from 0 to one less than the total number of

databases found. Figure 12.1 shows the output from Listing 12.7.

Figure 12.1: Listing available databases.

You could also use the result identifier returned by mysql_list_dbs() in the same

way as that returned by mysql_query() for a SELECT query. In other words, you can

pass the identifier to mysql_fetchrow(). mysql_fetchrow() returns an array with the

database name in the first element of the array.

 229

Listing the Tables Within a Database

Given a database name and (optionally) a link identifier, you can list all the tables in

a database using the mysql_list_tables() function. If the database can be found and

you have the right privileges, mysql_list_tables() returns a result identifier that you

can use with fetch functions such as mysql_fetch_row(). Alternatively, you can use

the mysql_tablename() function as we did with mysql_list_dbs().

The following fragment uses mysql_list_tables() to list all the tables in a database:

$result = mysql_list_tables("sample", $link);

while ($tab_rows = mysql_fetch_row($result))

 print "$tab_rows[0]
\n";

Listing and Exploring Fields

When you acquire a result identifier from mysql_query() using a SELECT query, you

can calculate the number of columns returned using mysql_num_fields().

mysql_num_fields() requires a result identifier and returns an integer representing

the number of fields found:

$result = mysql_query("SELECT * from domains");

$num_fields = mysql_num_fields($result);

Each field in a found set has an index (beginning at zero). Using a result identifier

and a field's index number, you can discover many of the field's attributes, including

its name, type, maximum length, and flags.

To get the name of a field, pass a result identifier and an index number to

mysql_field_name():

$result = mysql_query("SELECT * from domains");

$num_fields = mysql_num_fields($result);

for ($x=0; $x<$num_fields; $x++)

 mysql_field_name($result, $x) . "
\n";

To get the maximum length of a field, pass the same arguments to

mysql_field_len():

 230

$result = mysql_query("SELECT * from domains");

$num_fields = mysql_num_fields($result);

for ($x=0; $x<$num_fields; $x++)

 mysql_field_len($result, $x) . "
\n";

To get the flags associated with a field, pass a result identifier and an index number

to mysql_field_flags():

$result = mysql_query("SELECT * from domains");

$num_fields = mysql_num_fields($result);

for ($x=0; $x<$num_fields; $x++)

 mysql_field_flags($result, $x) . "
\n";

You can also get the type of a field with the mysql_field_type() function. It requires

the same arguments:

$result = mysql_query("SELECT * from domains");

$num_fields = mysql_num_fields($result);

for ($x=0; $x<$num_fields; $x++)

 mysql_field_flags($result, $x) . "
\n";

Database Structure— Bringing It All Together
Listing 12.8 combines all these techniques to list every database, table, and field

available to us from a connection.

Listing 12.8: Listing Every Database, Table, and Field

 1: <html>

 2: <head>

 3: <title>Listing 12.8 Listing every database, table, and field</title>

 4: </head>

 5: <body>

 6: <?php

 7: $user = "root";

 8: $pass = "n1ckel";

 9: $db = "sample";

10: $link = mysql_connect("localhost", $user, $pass);

11: if (! $link)

12: die("Couldn't connect to MySQL");

 231

13: $db_res = mysql_list_dbs($link);

14: while ($db_rows = mysql_fetch_row($db_res))

15: {

16: print "$db_rows[0]\n";

17: if (!@mysql_select_db($db_rows[0], $link))

18: {

19: print "<dl><dd>couldn't connect -- " . mysql_error() ." </dl>";

20: continue;

21: }

22: $tab_res = mysql_list_tables($db_rows[0], $link);

23: print "\t<dl><dd>\n";

24: while ($tab_rows = mysql_fetch_row($tab_res))

25: {

26: print "\t$tab_rows[0]\n";

27: $query_res = mysql_query("SELECT * from $tab_rows[0]");

28: $num_fields = mysql_num_fields($query_res);

29: print "\t\t<dl><dd>\n";

30: for ($x=0; $x<$num_fields; $x++)

31: {

32: print "\t\t<i>";

33: print mysql_field_type($query_res, $x);

34: print "</i> <i>";

35: print mysql_field_len($query_res, $x);

36: print "</i> ";

37: print mysql_field_name($query_res, $x);

38: print " <i>";

39: print mysql_field_flags($query_res, $x);

40: print "</i>
\n";

41: }

42: print "\t\t</d1>\n";

43: }

44: print "\t</d1>\n";

45: }

46: mysql_close($link);

47: ?>

48: </body>

49: </html>

 232

We connect to the MySQL server in the usual way and call mysql_list_dbs() to

acquire a result identifier. We pass this to mysql_fetch_row(), which returns the

name of every database available in turn (stored in the first element of the

$db_rows array).

We pass each database name to mysql_select_db(). If we don't have permission to

access the database, we print a message to the browser and use the continue

statement to begin the next iteration. If we are able to select the database, we can

go ahead and print its table names.

We pass the database name to mysql_list_tables() and acquire a new result

identifier. Once again, we can pass this to mysql_fetch_row(), beginning a new loop

to list each table name. We print the table name and then use it to construct a SQL

SELECT query, requesting all fields and rows from the table. We pass the query to

mysql_query() and acquire yet another result identifier.

The result identifier acquired from mysql_query() is passed to mysql_num_fields()

to get the number of fields in the found set.

We use a for statement to loop from zero to one less than the total number of

columns in the resultset. The counter variable ($x) represents the index number of

each field in the table that we want to test. We call each of the field test functions we

covered in the last section in turn, outputting their return values to the browser.

When this script is run, we should get a reasonably neat listing of every database,

table, and field available from a connection. Figure 12.2 shows part of the output

from this script.

Figure 12.2: Listing every database, table, and field.

Summary

 233

In this hour, we covered some of the basics of storing and retrieving information

from a MySQL database.

You should now be able to establish a connection to the MySQL server using

mysql_connect() or mysql_pconnect().

You should be able to select a database with mysql_select_db(). If the selection fails,

you should be able to discover more about the error with mysql_error().

You should be able to make SQL queries using mysql_query(). With the result

identifier this function returns, you should be able to access data, or discover the

number of rows you have transformed.

You should be able to use PHP's MySQL functions to list the number of databases,

tables, and fields accessible to you and to find out more about the attributes of

individual fields.

Q&A

Q This hour is specific to MySQL. How transferable are these examples to

other SQL databases?

A There are functions for mSQL that mirror those for MySQL almost exactly. Other

database servers have corresponding PHP functions that support their features and

capabilities. The common feature of many suites of database function is the

capability to send SQL queries. If you work with ANSI (standard) SQL, you should

have little problem adapting scripts across database servers.

Q What is the best way of writing code that can be easily adapted to work

with different database servers?

A It is often a good idea to group code that queries a database into a single class or

library. If you need to rewrite your project to work with a different database, you will

only need to change a discrete portion of your code without disturbing the project as

a whole.

Workshop

 234

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

How would you open a connection to a MySQL database server?

What function would you use to select a database?

What function would you use to send a SQL query to a database?

What does the mysql_insert_id() function do?

Assuming that you have sent a successful SELECT query to MySQL, name three

functions that you might use to access each row returned.

Assuming that you have sent a successful UPDATE query to MySQL, what

function might you use to determine how many rows have been updated?

What function would you call if you want to list all databases available from a

MySQL server?

What function would you use to list all tables within a database?

Activities

Create a database with three fields: email (up to 70 characters), message (up to

250 characters), and date (an integer that will contain a UNIX time stamp). Build

a script to allow users to populate the database.

Create a script that displays the information from the database you created in

activity 1.

 235

Hour 13: Beyond the Box

Overview

In this hour, we will look at some of the functions that allow you to gain information

from or interact with the outside world. In this hour, you will learn

More about environmental variables

The anatomy of an HTTP connection

How to acquire a document from a remote server

How to create your own HTTP connection

How to connect to other network services

How to send email from your scripts

Environmental Variables
You have already encountered some of the environmental variables that PHP, in

conjunction with your server, makes available for you. Some of these variables are

useful in discovering more information about your visitors. You should be aware,

though, that these variables might not be available on your system or with your

server software, so it is a good idea to check before using them in scripts. Table 13.1

lists some of the variables that you might be able to use to find out more about your

visitors.

Table 13.1: Some Useful Environmental Variables

Variable Description

$HTTP_REFERER The URL from which the current script was called (the

misspelling is deliberate).

$HTTP_USER_AGENT Information about the browser and platform that the

visitor is using.

$REMOTE_ADDR The visitor's IP address.

$REMOTE_HOST The visitor's hostname.

$QUERY_STRING The (encoded) string that may be appended to the URL

(in the

format ?akey=avalue&anotherkey=anothervalue).

These keys and values should become available to your

scripts in global variables.

$PATH_INFO Additional information that may be appended to the

 236

URL.

Listing 13.1 builds a script that outputs the contents of these variables to the

browser.

Listing 13.1: Listing Some Environmental Variables

 1: <html>

 2: <head>

 3: <title>Listing 13.1 Listing some environmental variables</title>

 4: </head>

 5: <body>

 6: <?php

 7: $envs = array("HTTP_REFERER", "HTTP_USER_AGENT", "REMOTE_ADDR",

"REMOTE_

 HOST", "QUERY_STRING", "PATH_INFO");

 8: foreach ($envs as $env)

 9: {

10: if (isset($$env))

11: print "$env: ${$env}
";

12: }

13: ?>

14: </body>

15: </html>

Notice our use of dynamic variables to convert strings into variables of the same

name. We covered this technique in Hour 4, "The Building Blocks."

Figure 13.1 shows the output from Listing 13.1. The data in Figure 13.1 was

generated as a result of calling the script from a link in another page. The link that

called the script looked like this:

go

As you can see, the link uses a relative path to call listing13.1.php.

 237

Figure 13.1: Printing some environmental variables to the browser.

Additional path information (my_path_info) is included after the document name,

which becomes available in $PATH_INFO.

We have hard-coded a query string (query_key=query_value) into the link, which

becomes available in $QUERY_STRING. You will most often encounter a query string

when using a form with a GET method argument, but you can also build your own

query strings to pass information from page to page. The query string consists of

name value pairs separated by ampersand (&) symbols. These pairs are URL

encoded, which means that any characters that are illegal or have other meanings

in URLs will be converted to their hexadecimal equivalents. Although you have

access to the entire query string in the $QUERY_STRING environmental variable,

you will rarely need to use this fact. Each key name will be available to you as a

global variable ($query_value in our example) that will hold a corresponding

decoded value ("query_value").

The $HTTP_REFERER variable can be useful to you if you want to track which hits on

your script originate from which links. Beware, though; this and other

environmental variables can be easily faked. You will see how later in this hour.

Because correcting it would cause compatibility problems, we are stuck with the

incorrect spelling of 'referrer'. Not all browser will supply this header, so you should

avoid relying upon it.

You can parse the $HTTP_USER_AGENT variable to work out the platform and

browser that the visitor is using. Once again, this can be faked. This variable can be

useful if you need to present different HTML code or JavaScript according to the

browser type and version the visitor is using. Hour 17, "Working with Strings," and

Hour 18, "Working with Regular Expressions," will give you the tools you need to

extract any information you want from this string.

 238

The $REMOTE_ADDR variable contains the user's IP address and can be used to

track unique visitors to your site. Be aware, though, that many Web users do not

have a fixed IP address. Instead, their Internet service providers dynamically

allocate them an address when they dial up. This means that a single IP address

might be used by different visitors to your site, and that a single visitor might enter

using different IP addresses from the same account.

The $REMOTE_HOST variable might not be available to you, depending on the

configuration of your server. If available, it will hold the hostname of the user. The

presence of this variable requires that the server look up the hostname for every

request, so it is often disabled for the sake of efficiency. If you don't have access to

this variable, you can acquire it yourself using the value of the $REMOTE_ADDR

variable. You will see how to do this later in the hour.

A Brief Summary of an HTTP Client/Server Negotiation

It is beyond the scope of this book to explore all the information exchanged between

server and client when a request is made, not least because PHP handles most of

these details for you. It is a good idea to gain a basic understanding of this process,

however, especially if you intend to write scripts that fetch Web pages or check the

status of Web addresses.

 NEW

TERM

HTTP stands for hypertext transfer protocol. It is essentially a

set of rules that define the process by which a client sends a

request and a server returns a response. Both client and server

provide information about themselves and the data to be

transferred. Much of this information becomes available to you in

environmental variables.

The Request

A client requests data from the server according to a strict set of rules. The request

consists of up to three components:

A request line

A header section

An entity body

The request line is mandatory. It consists of a request method, typically GET, HEAD,

or POST; the address of the document to required; and the HTTP version to be used

 239

(HTTP/1.0 or HTTP/1.1). A typical request for a document called mydoc.html might

look like this:

GET /mydoc.html HTTP/1.0

The client is making a GET request. In other words, it is requesting an entire

document but sending no data itself (in fact you can send small amounts of data as

part of a GET request by adding a query string to the URL. The HEAD method would

be used if you only wanted information about a document. The POST method is used

to transfer data from a client to the server, usually from an HTML form.

The request line is enough in itself to make a valid GET request. To inform the server

that a request is complete, an empty line must be sent.

Most clients will follow the request line with a header section in which name/value

pairs can be sent to the server. Some of these will become available to you as

environmental variables. Each client header consists of a key and value on one line

separated by a colon. Table 13.2 lists a few of these.

Table 13.2: Some Client Headers

Name Description

Accept The media

types that the

client can work

with.

Accept-Encoding The types of

data

compression

that the client

can handle.

Accept-Charset The character

sets that the

client prefers.

Accept-Language The language

that the client

prefers ('en' for

English).

Host The host to

 240

which a request

is being made.

Some servers

that maintain

multiple virtual

servers rely

heavily on this

header.

Referer The document

from which a

request is

being made.

User-Agent Information

about the client

type and

version.

For GET and HEAD methods, the header section ends the request, and an empty line

is sent to the server. For requests made using the POST method, an empty line is

followed by the entity body. An entity body consists of any data to be sent to the

server. This is usually a set of URL-encoded name/value pairs similar to those found

in a query string.

Listing 13.2 shows a request sent to a server by Netscape 4.6.

Listing 13.2: Typical Client Headers Sent by a Netscape Browser

GET / HTTP/1.0

Referer:

http://8080-zink.demon.co.uk.proxy.lib.uiowa.edu/matt/php-book/network/test2.

php

Connection: Keep-Alive

User-Agent: Mozilla/4.6 (X11; I; Linux 2.2.6-15apmac ppc)

Host: www.corrosive.co.uk

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

 241

The Response

After a server has received a client's request, it sends a response back to the client.

The response usually consists of three parts:

A status line

A header section

An entity body

As you can see, there's a lot of symmetry between a request and a response. In fact,

certain headers can be sent by either client or server, especially those that provide

information about an entity body.

The status line consists of the HTTP version that the server is using (HTTP/1.0 or

HTTP/1.1), a response code, and a text message that clarifies the meaning of the

response code.

There are many response codes that a server can send to a browser. Each code

provides some information about the success or otherwise of the request. Table

13.3 lists some of the more common response codes.

Table 13.3: Some Response Codes

Code Text Description

200 OK The request

was successful,

and the

requested data

will follow.

301 Moved

Permanently

The requested

data no longer

exists on the

server. A

location header

will contain a

new address.

302 Moved

Temporarily

The requested

data has been

 242

moved. A

location header

will contain a

new address.

404 Not Found The data could

not be found at

the supplied

address.

500 Internal

Server Error

The server or a

CGI script has

encountered a

severe problem

in attempting

to serve the

data.

A typical response line, therefore might look something like the following:

HTTP/1.1 200 OK

The header section includes a series of response headers, formatted in the same

way as request headers. Table 13.4 lists some headers commonly sent by servers.

Table 13.4: Some Common Server Headers

Name Description

Date The current

date

Server The server

name and

version

Content-Type The MIME type

of content in

the entity body

Content-Length The size of the

entity in bytes

Location The full address

of an

 243

alternative

document

After the headers have been sent, the server sends an empty line to the client

followed by the entity body (the document originally requested). Listing 13.3 shows

a typical server response.

Listing 13.3: A Server Response

 1: HTTP/1.1 200 OK

 2: Date: Sun, 30 Jan 2000 18:02:20 GMT

 3: Server: Apache/1.3.9 (UNIX)

 4: Connection: close

 5: Content-Type: text/html

 6:

 7: <html>

 8: <head>

 9: <title>Listing 13.3 A server response</title>

10: </head>

11: <body>

12: Hello

13: </body>

14: </html>

Getting a Document from a Remote Address
Although PHP is a server-side language, it can act as a client, requesting data from

remote servers and making the output available to your scripts. If you are already

comfortable reading files from the server, you will have no problem using PHP to

acquire information from the Web. In fact, the syntax is exactly the same. You can

use fopen() to connect to a Web address in the same way as you would with a file.

Listing 13.4 opens a connection to a remote server and requests a page, printing the

result to the browser.

Listing 13.4: Getting and Printing a Web Page with fopen()

 1: <html>

 2: <head>

 3: <title>Listing 13.4 Getting and printing a web page with fopen()</title>

 4: </head>

 244

 5: <body>

 6: <?php

 7: $webpage =

"http://80-www.corrosive.co.uk.proxy.lib.uiowa.edu/php/hello.html";

 8: $fp = fopen($webpage, "r") or die("couldn't open $webpage");

 9: while (! feof($fp))

10: print fgets($fp, 1024);

11: ?>

12: </body>

13: </html>

When this script is run, you should see the PHP homepage. Notice that the images

on the page we include are "broken." This is because paths to images in IMG

elements are often relative. When our script outputs the data it has downloaded, the

user's browser will look on our server for the images referenced. We could work

around this problem to some extent by adding the following tag to the HEAD

element of our script:

<base href="http://www.php.net">

It is unlikely that you will want to output an entire page to the browser. More

commonly, you would parse the document you download.

fopen() returns a file pointer if the connection is successful and false if the

connection cannot be established or the page doesn't exist. After you have a file

pointer, you can use it as normal to read the file. PHP introduces itself to the remote

server as a client. On my system, it sends the following request:

GET / HTTP/1.0

Host: www.php.net

User-Agent: PHP/4.0b3

This process is simple and is the approach you will use to access a Web page in most

instances. You might want to connect to other network services, however, or learn

more about a Web document by parsing the server headers. You will look at how to

do this later in the hour.

Converting IP Addresses and Hostnames
Even if your server does not provide you with a $REMOTE_HOST variable, you will

probably know the IP address of a visitor from the $REMOTE_ADDR environmental

variable. You can use this in conjunction with the function gethostbyaddr() to get

the user's hostname. gethostbyaddr() requires a string representing an IP address.

It returns the equivalent hostname. If an error occurs, it returns the IP address it

 245

was given. Listing 13.5 creates a script that uses gethostbyaddr() to acquire the

user's hostname if the $REMOTE_HOST variable is not available.

Listing 13.5: Using gethostbyaddr() to Get a Hostname

 1: <html>

 2: <head>

 3: <title>Listing 13.5 Using gethostbyaddr() to get a host name</title>

 4: </head>

 5: <body>

 6: <?php

 7: if (isset($REMOTE_HOST))

 8: print "Hello visitor at $REMOTE_HOST
";

 9: elseif (isset ($REMOTE_ADDR))

10: print "Hello visitor at ".gethostbyaddr($REMOTE_ADDR)."
";

11: else

12: print "Hello you, wherever you are
";

13: ?>

14: </body>

15: </html>

If we have access to the $REMOTE_HOST variable, we simply print this to the

browser. Otherwise, if we have access to the $REMOTE_ADDR variable, we attempt

to acquire the user's hostname using gethostbyaddr(). If all else fails, we print a

generic welcome message.

To attempt to convert a hostname to an IP address, you can use gethostbyname().

This function requires a hostname as its argument. It returns an IP address or, if an

error occurs, the hostname you provided.

Making a Network Connection

So far we have had it easy. This is because PHP makes working with a Web page on

a remote server as simple as opening a file on your own system. Sometimes, though,

you need to exercise a little more control over a network connection or acquire more

information about it.

You can make a connection to an Internet server with fsockopen(), which requires a

hostname or IP address, a port number, and two reference variables. Remember

that you can pass a reference to a variable by prepending an ampersand (&) symbol.

The reference variables you passed to fsockopen() are populated to provide more

 246

information about the connection attempt should it fail. You can also pass

fsockopen() an optional timeout integer, which determines how long fsockopen()

will wait (in seconds) before giving up on a connection. If the connection is

successful, a file pointer is returned. Otherwise, it returns false.

The following fragment initiates a connection to a Web server:

$fp = fsockopen("www.corrosive.co.uk", 80, &$errno, &errdesc, 30);

80 is the usual port number that a Web server listens on.

The first reference variable, $errno, contains an error number if the connection is

unsuccessful, and $errdesc might contain more information about the failure.

After you have the file pointer, you can both write to the connection with fputs() and

read from it with fgets() as you might with a file. When you have finished working

with your connection, you should close it with fclose().

We now have enough information to initiate our own connection to a Web server.

Listing 13.6 makes an HTTP connection, retrieving a page and storing it in a

variable.

Listing 13.6: Retrieving a Web Page Using fsockopen()

 1: <html>

 2: <head>

 3: <title>Listing 13.6 Retrieving a Web page using fsockopen()</title>

 4: </head>

 5: <body>

 6: <?php

 7: $host = "www.corrosive.co.uk";

 8: $page = "/index.html";

 9: $fp = fsockopen("$host", 80, &$errno, &$errdesc);

10: if (! $fp)

11: die ("Couldn't connect to $host:\nError: $errno\nDesc: $errdesc\n");

12:

13: $request = "GET $page HTTP/1.0\r\n";

14: $request .= "Host: $host\r\n";

 247

15: $request .= "Referer:

http://80-www.corrosive.co.uk.proxy.lib.uiowa.edu/refpage.html\r\n";

16: $request .= "User-Agent: PHP test client\r\n\r\n";

17: $page = array();

18: fputs ($fp, $request);

19: while (! feof($fp))

20: $page[] = fgets($fp, 1024);

21: fclose($fp);print "the server returned ".(count($page))." lines!";

22: ?>

23: </body>

24: </html>

Notice the request headers that we send to the server. The Webmaster at the

remote host will see the value you sent in the User-Agent header in her log file. She

may also assume that a visitor to our page connected from a link at

http://80-www.corrosive.co.uk.proxy.lib.uiowa.edu/refpage.html. For this reason,

you should be cautious of some of the environmental variables available to your

scripts. Treat them as an invaluable guide, rather than a set of facts.

There are some legitimate reasons why you might want to fake some headers. You

might need to parse some data that will only be sent to Netscape compatible

browsers. The only way you can do this is to include the word "Mozilla" in the

User-Agent header. Nevertheless, pity the poor Webmaster. Operational decisions

are made as a result of server statistics, so try not to distort the information you

provide.

The example in Listing 13.6 adds little to PHP's built-in method of acquiring Web

pages. Listing 13.7 uses fsockopen() to check the status codes returned by servers

when we request a series of pages.

Listing 13.7: Outputting the Status Lines Returned by Web Servers

 1: <html>

 2: <head>

 3: <title>Listing 13.7 Outputting the status lines returned by web servers</

 248

 title>

 4: </head>

 5: <body>

 6: <?php

 7: $to_check = array ("www.corrosive.co.uk" => "/index.html",

 8: "www.virgin.com" => "/notthere.html",

 9: "www.4332blah.com" => "/nohost.html"

10:);

11: foreach ($to_check as $host => $page)

12: {

13: $fp = fsockopen("$host", 80, &$errno, &$errdesc, 10);

14: print "Trying $host
\n";

15: if (! $fp)

16: {

17: print "Couldn't connect to $host:\n
Error: $errno\n
Desc:

 $errdesc\n";

18: print "
<hr>
\n";

19: continue;

20: }

21: print "Trying to get $page
\n";

22: fputs($fp, "HEAD $page HTTP/1.0\r\n\r\n");

23: print fgets($fp, 1024);

24: print "

\n";

25: fclose($fp);

26: }

27: ?>

28: </body>

29: </html>

 249

We create an associative array of the server names and page addresses we want to

check. We loop through this using a foreach statement. For every element, we

initiate a connection using fsockopen(), setting a timeout of 10 seconds. If the

connection fails, we print a message to the browser and use continue to move on to

the next pair. If the connection is successful, we send a request to the server. We

use the HEAD method because we are not interested in parsing an entity body. We

use fgets() to get the status line from the server. We are not going to work with

server headers for this example, so we close the connection with fclose() and move

on to the next element in the list.

Figure 13.2 shows the output from Listing 13.7.

Figure 13.2: A script to print server response headers.

Making an NNTP Connection Using fsockopen()

fsockopen() can be used to make a connection to any Internet server. In Listing

13.8, we connect to an NNTP (Usenet) server, select a newsgroup, and list the

headers of the first message.

Listing 13.8: A Basic NNTP Connection Using fsockopen()

 1: <html>

 2: <head>

 3: <title>Listing 13.8 A basic NNTP connection using fsockopen()</title>

 4: </head>

 5: <body>

 250

 6: <?php

 7: $server = "news"; // change this to your news server

 8: $group = "alt.test";

 9: $line = "";

10: print "<pre>\n";

11: print "-- Trying to connect to $server\n\n";

12: $fp = fsockopen("$server", 119, &$error, &$description, 10);

13: if (! $fp)

14: die("Couldn't connect to $server\n$errno\n$errdesc\n\n");

15: print "-- Connected to $server\n\n";

16: $line = fgets($fp, 1024);

17: $status = explode(" ", $line);

18: if ($status[0] != 200)

19: {

20: fputs($fp, "close");

21: die("Error: $line\n\n");

22: }

23: print "$line\n";

24: print "-- Selecting $group\n\n";

25: fputs($fp, "group alt.test\n");

26: $line = fgets($fp, 1024);

27: $status = explode(" ", $line);

28: if ($status[0] != 211)

29: {

30: fputs($fp, "close");

31: die("Error: $line\n\n");

32: }

33: print "$line\n";

34: print "-- Getting headers for first message\n\n";

35: fputs($fp, "head\n");

 251

36: $line = fgets($fp, 1024);

37: $status = explode(" ", $line);

38: print "$line\n";

39: if ($status[0] != 221)

40: {

41: fputs($fp, "close");

42: die("Error: $line\n\n");

43: }

44: while (! (strpos($line, ".") === 0))

45: {

46: $line = fgets($fp, 1024);

47: print $line;

48: }

49: fputs($fp, "close\n");

50: print "</pre>";

51: ?>

52: </body>

53: </html>

The code in Listing 13.8 does little more than demonstrate that an NNTP connection

is possible with fsockopen(). In a real-world example, you would want to handle the

line parsing in a function to save repetition and to extract more information from the

server's output. Rather than reinvent the wheel in this way, you might want to

investigate PHP's IMAP functions, which will automate much of this work for you.

We store the hostname of our server in a variable, $server, and the group we want

to select in $group. If you wish to run this script, you should assign the hostname of

your Internet Service Provider's news server to the $server variable. We use

fsockopen() to connect to the host on port 119, which is the usual port for NNTP

connections. If a valid file pointer is not returned, we use die() to print the error

number and description to the browser and end script execution. On connection, the

server should have sent us a confirmation message, so we attempt to acquire this

with fgets(). If all is well, this string begins with the status code 200. To test this, we

 252

use explode() to split the $line string into an array using the space character as the

delimiter. You can learn more about the explode function in Hour 17. If the first

element of this array is 200, we can continue; otherwise, we end the script.

If all is proceeding as expected, we send the news server the "group" command that

should select a newsgroup. If this is successful, the server should return a string

beginning with the status code 211. We test this once again, and end execution if we

don't get what we are expecting.

Now that we have selected our newsgroup, we send the "head" command to the

server, which requests the headers for the first message in the group. Again, we

test the server response, looking for the status code 221. Finally, we acquire the

header itself. The server's listing of a header will end with a single dot(.) on its own

line, so we test for this in a while statement. As long as the server's output line does

not begin with a dot, we request and print the next line.

Finally, we close the connection. Figure 13.3 shows a typical output from Listing

13.8.

Figure 13.3: Making an NNTP connection.

Sending Mail with the mail() Function
PHP can automate the sending of Internet mail for you. The mail() function

requires three strings representing the recipient of the mail, the mail subject, and

the message. mail() returns false if it encounters an error. In the following

fragment, we send an email:

$to = "someone@adomain.com";

$subject = "hi";

 253

$message = "just a test message! ";

mail($to, $subject, $message) or print "Could not send mail";

If you are running PHP on a UNIX system, mail() will use Sendmail. On other

systems, the function will connect to a local or remote SMTP mail server. You should

set this using the SMTP directive in the php.ini file.

You are not limited to the mail headers implied by the mail() function's required

arguments. You can include as many mail headers as you want in an optional fourth

string argument. These should be separated by CRLF characters ('\r\n'). In the

following example, we include a From field in our mail message, as well as an

X-Priority header that some clients will recognize:

$to = "someone@adomain.com";

$from = "book@corrosive.co.uk";

$subject = "hi";

$message = "just a test message! ";

mail($to, $subject, $message, "$from\r\nX-Priority: 1 (Highest)")

or print "Could not send mail";

Summary

In this hour, you learned how to use environmental variables to learn more about

your visitors. If you don't have access to a user's hostname, you should now be able

to use gethostbyaddr() to acquire it.

You learned some of the basics about the negotiation that takes place between

client and server when an HTTP connection is made.

You learned how to use fopen() to get a document from the Web, and how to use

fsockopen() to make your own HTTP connection. You should also be able to use

fsockopen() to make connections to other network services. Finally, you learned

how to use mail() to send email from your scripts.

Q&A

Q HTTP seems a little esoteric. Do I really need to know about it to write

good PHP code?

A No. You can write excellent code with knowing the intricacies of client/server

interaction. On the other hand, a basic understanding of the process is useful if you

want to do more than just download pages from remote servers.

 254

Q If I can send fake headers to a remote server, how suspicious should I be

of environmental variables myself?

A You should not trust environmental variables such as $HTTP_REFERRER and

$HTTP_USER_AGENT if their accuracy is essential to the operation of your script.

Remember, though, that the vast majority of clients that you deal with will tell you

the truth. If you are merely ensuring a productive user experience by detecting

browser type or gathering overall statistical information, there is no need to distrust

this data.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

What environmental variable might give you the URL of the referring page?

Why can you not rely on the $REMOTE_ADDR variable to track an individual user

across multiple visits to your script?

What does HTTP stand for?

What client header line tells the server about the browser that is making the

request?

What does the server response code 404 mean?

Without making your own network connection, what function might you use to

access a Web page on a remote server?

Given an IP address, what function could you use to get a hostname?

What function would you use to make a network connection?

What PHP function would you use to send an email?

Activities

Create a script that accepts a Web hostname (such as

http://www.microsoft.com) from user input. Send the host a HEAD request

using fsockopen() to create the connection. Print the response to the browser.

Remember to handle the possibility that no connection can be established.

 255

Create a script that accepts a message from the user and mails it to you. Add

environmental variables to the user's message to tell you about his or her

browser and IP address.

 256

Hour 14: Working with Dynamic Images

Overview

The functions included in this hour rely on an open source library called GD.

The GD library is a set of tools that enable programmers to create and work with

images on-the-fly. You can find out more about GD at http://www.boutell.com/gd/.

If you have the GD library installed on your system and PHP was compiled to use it,

you will be able to use PHP's image functions to create dynamic images. Many

systems will still run the older version of the library, which allows the creation of

images in GIF format. Later versions of the library do not support GIFs for licensing

reasons. If your system is using a later library, it is possible to compile PHP so that

the image functions output images in PNG format, which is supported by the more

popular browsers.

If you have the GD library, you will be able to use PHP's image functions to create

sophisticated graphics on-the-fly. In this hour, you will learn

How to create and output an image

How to work with colors

How to draw shapes, including arcs, rectangles, and polygons

How to fill areas with color

How to work with TrueType fonts

Creating and Outputting Images
Before you can begin to work with an image, you must acquire an image identifier.

You can do this using the imagecreate() function. imagecreate() requires two

arguments, one for the image's height and another for its width. It returns an image

identifier, which you will use with most of the functions that we will cover in this

hour.

After you have an image identifier, you are nearly ready to output your first image

to the browser. To do this, you need the imagegif() function, which requires the

image identifier as an argument. Listing 14.1 uses these functions to create and

output an image.

Listing 14.1: A Dynamically Created Image

1: <?php

 257

2: header("Content-type: image/gif");

3: $image = imagecreate(200, 200);

4: imagegif($image);

5: ?>

Notice that we sent a Content-type header to the browser before doing anything

else. We need to tell the browser to expect image information; otherwise, it treats

the script's output as HTML. This script can now be called directly by the browser, or

as part of an IMG element.

Figure 14.1 shows the output of Listing 14.1.

We have created a square, but we have no way as yet of controlling its color.

Figure 14.1: A dynamically created image.

Acquiring Color

To work with color, you need to acquire a color identifier. You can do this with the

imagecolorallocate() function, which requires an image identifier and three integers

between 0 and 255 representing red, green, and blue. The function returns an

image identifier that you can use to define the color of shapes, fills, and text.

$red = imagecolorallocate($image, 255,0,0);

 258

Coincidentally, the first time you call imagecolorallocate(), you also set the default

color for your image; so by adding the previous code fragment to Listing 14.1, we

would create a red square.

Drawing Lines
Before you draw a line on an image, you need to determine the points from and to

which you want to draw.

You can think of an image as a block of pixels indexed from 0 on both the horizontal

and vertical axes. Their origin is the top left-hand corner of the image.

In other words, the pixel with the coordinates 5, 8 is the sixth pixel along and the

ninth pixel down, looking from left to right, top to bottom.

The imageline() function draws a line between one pixel coordinate and another. It

requires an image identifier, four integers representing the start and end

coordinates of the line, and a color identifier.

Listing 14.2 adds to the image created in Listing 14.1, drawing a line from corner to

corner.

Listing 14.2: Drawing a Line with imageline()

1: <?php

2: header("Content-type: image/gif");

3: $image = imagecreate(200, 200);

4: $red = imagecolorallocate($image, 255,0,0);

5: $blue = imagecolorallocate($image, 0,0,255);

6: imageline($image, 0, 0, 199, 199, $blue);

7: imagegif($image);

8: ?>

We acquire two color identifiers, one for red and one for blue. We then use the

identifier stored in the variable $blue for the line's color. Notice that our line ends at

the coordinates 199, 199 and not 200, 200. Remember that pixels are indexed from

0. Figure 14.2 shows the output from Listing 14.2.

 259

Figure 14.2: Drawing a line with imageline().

Applying Color Fills
You can fill an area with color using PHP just as you can with your favorite graphics

application. The function imagefill() requires an image identifier, starting

coordinates for the fill it is to perform, and a color identifier. It then transforms the

starting pixel and all adjacent pixels of the same color. Listing 14.3 adds a call to

imagefill() to our script, making the image a little more interesting.

Listing 14.3: Using imagefill()

1: <?php

2: header("Content-type: image/gif");

3: $image = imagecreate(200, 200);

4: $red = imagecolorallocate($image, 255,0,0);

5: $blue = imagecolorallocate($image, 0,0,255);

6: imageline($image, 0, 0, 199, 199, $blue);

7: imagefill($image, 0, 199, $blue);

8: imagegif($image);

9: ?>

Figure 14.3 shows the output from Listing 14.3.

 260

Figure 14.3: Using imagefill().

Drawing an Arc
You can add partial or complete arcs to your images with the imagearc() function.

imagearc() requires an image object, coordinates for the center point, an integer for

width, an integer for height, a start point and an end point (in degrees), and a color

identifier. Arcs are drawn clockwise starting from 3 o'clock. The following fragment

draws a quarter circle:

imagearc($image, 99, 99, 200, 200, 0, 90, $blue);

This draws a partial arc, with its center at the coordinates 99, 99. The total height

and width will both be 200 pixels. Drawing starts at 3 o'clock and continues for 90

degrees (to 6 o'clock).

Listing 14.4 draws a complete circle and fills it with blue.

Listing 14.4: Drawing a Circle with imagearc()

 1: <?php

 2: header("Content-type: image/gif");

 3: $image = imagecreate(200, 200);

 4: $red = imagecolorallocate($image, 255,0,0);

 5: $blue = imagecolorallocate($image, 0,0,255);

 6: imagearc($image, 99, 99, 180, 180, 0, 360, $blue);

 7: imagefill($image, 99, 99, $blue);

 8: imagegif($image);

 9: ?>

 261

Figure 14.4 shows the output from Listing 14.4.

Figure 14.4: Drawing a circle with imagearc().

Drawing a Rectangle
You can draw a rectangle in PHP using the imagerectangle() function.

imagerectangle() requires an image identifier, the coordinates for your rectangle's

top-left corner, the coordinates for its bottom-right corner, and a color identifier.

The following fragment draws a rectangle whose top-left coordinates are 19, 19 and

bottom-right coordinates are 179, 179:

imagerectangle($image, 19, 19, 179, 179, $blue);

You could then fill this with imagefill(). Because this is such a common operation,

however, PHP provides the imagefilledrectangle() function, which expects exactly

the same arguments as imagerectangle() but produces a rectangle filled with the

color you specify. Listing 14.5 creates a filled rectangle and outputs the image to the

browser.

Listing 14.5: Drawing a Filled Rectangle with imagefilledrectangle()

1: <?php

2: header("Content-type: image/gif");

3: $image = imagecreate(200, 200);

4: $red = imagecolorallocate($image, 255,0,0);

5: $blue = imagecolorallocate($image, 0,0,255);

6: imagefilledrectangle($image, 19, 19, 179, 179, $blue);

7: imagegif($image);

 262

8: ?>

Figure 14.5 shows the output from Listing 14.5.

Figure 14.5: Drawing a filled rectangle with imagefilled-rectangle().

Drawing a Polygon
You can draw more sophisticated shapes using imagepolygon(). This function

requires an image identifier, an array of point coordinates, an integer representing

the number of points in the shape, and a color identifier. The array passed to

imagepolygon() should be numerically indexed. The first two elements give the

coordinates of the first point, the second two give the coordinates of the second

point, and so on. imagepolygon() fills in the lines between the points, automatically

closing your shape by joining the final point to the first. You can create a filled

polygon with the imagefilledpolygon() function.

Listing 14.6 draws a filled polygon, outputting the result to the browser.

Listing 14.6: Drawing a Polygon with imagefilledpolygon()

 1: <?php

 2: header("Content-type: image/gif");

 3: $image = imagecreate(200, 200);

 4: $red = imagecolorallocate($image, 255,0,0);

 5: $blue = imagecolorallocate($image, 0,0,255);

 6: $points = array (10, 10,

 7: 190, 190,

 263

 8: 190, 10,

 9: 10, 190

10:);

11: imagefilledpolygon($image, $points, count($points)/2 , $blue);

12: imagegif($image);

13: ?>

Notice that to tell imagefilledpolygon() how many points we want to connect, we

count the number of elements in the $points array and divide the result by 2. Figure

14.6 shows the output from Listing 14.6.

Figure 14.6: Drawing a polygon with imagefilled-polygon().

Making a Color Transparent
PHP allows you to make selected colors within your image transparent with

imagecolortransparent(). This function requires an image identifier and a color

identifier. When you output your image to the browser, the color you pass to

imagecolortransparent() will be transparent. Listing 14.7 changes our polygon code

so that the shape "floats" on the browser instead of sitting against a background

color.

Listing 14.7: Making Colors Transparent with imagecolortransparent()

 1: <?php

 2: header("Content-type: image/gif");

 3:

 264

 4: $image = imagecreate(200, 200);

 5: $red = imagecolorallocate($image, 255,0,0);

 6: $blue = imagecolorallocate($image, 0,0,255);

 7:

 8: $points = array (10, 10,

 9: 190, 190,

10: 190, 10,

11: 10, 190

12:);

13:

14: imagefilledpolygon($image, $points, count($points)/2 , $blue);

15: imagecolortransparent($image, $red);

16: imagegif($image);

17: ?>

Figure 14.7 shows the output from Listing 14.7.

Figure 14.7: Making colors transparent with image-colortransparent().

Working with Text

If you have TrueType fonts on your system, you can use these to write text into your

images. In addition to the GD library, you need to have the FreeType library

installed on your system. If you have this combination, you can create image-based

 265

charts or navigation elements. PHP even gives you the tool you need to check that

any text that you write will fit within the space available.

Writing a String with imageTTFtext()

You can write text to your image with the imageTTFtext() function. This requires

eight arguments: an image identifier, a size argument representing the height of

the characters to be written, an angle, the starting coordinates (one argument for

the x axis and another for the y axis), a color identifier, the path to a TrueType font,

and the text you want to write.

The start point for any text you write determines where the baseline of the first

character in the string will be.

Listing 14.8 writes a string to an image and outputs the result to the browser.

Listing 14.8: Writing a String with imageTTFtext()

 1: <?php

 2: header("Content-type: image/gif");

 3:

 4: $image = imagecreate(400, 200);

 5: $red = imagecolorallocate($image, 255,0,0);

 6: $blue = imagecolorallocate($image, 0,0,255);

 7: $font = "/usr/local/jdk121_pre-v1/jre/lib/fonts/LucidaSansRegular.ttf";

 8:

 9: imageTTFtext($image, 50, 0, 20, 100, $blue, $font, "Welcome!");

10:

11: imagegif($image);

12: ?>

We create a canvas with a width of 400 pixels and a height of 200 pixels. We define

two colors and store the path to a TrueType font in a variable called $font. Note that

font files are likely to be stored in a different directory on your server. If you are not

 266

sure where, you could try searching for files with the .ttf extension. We then write

the text "Welcome!" to the image.

For the call to imageTTFtext(), we define a size of 50, an angle of 0, a starting

position of 20 on the x axis and 100 on the y axis. We also pass the function the color

identifier stored in the $blue variable, the font path stored in $font, and, finally, the

text we want to output. You can see the result in Figure 14.8.

Figure 14.8: Writing text with imageTTFtext().

Of course, we have to guess where to put the text at the moment. The size

argument does not give us an accurate idea of the text's height, and the width is a

mystery. In fact, imageTTFtext() will return dimension information, but by then the

deed is done. Luckily, PHP provides a function that allows you to try before you buy.

Testing Text Dimensions with imageTTFbox()

You can get information about the dimensions of text using the imageTTFbox()

function, which is so called because it tells you about the text's bounding box.

imageTTFbox() requires the font size, the angle, a path to a font file, and the text to

be written. It is one of the few image functions that do not require an image

identifier. It returns an eight-element array, which is explained in Table 14.1.

Table 14.1: The Array Returned by imageTTFbox()

Index Description

0 bottom left

 267

(horizontal

axis)

1 bottom left

(vertical axis)

2 bottom right

(horizontal

axis)

3 bottom right

(vertical axis)

4 top right

(horizontal

axis)

5 top right

(vertical axis)

6 top left

(horizontal

axis)

7 top left

(vertical axis)

All figures on the vertical axis are relative to the text's baseline, which is 0. Figures

for the vertical axis at the top of the text count down from this figure, and so usually

are minus numbers. Figures for the vertical axis at the bottom of the text count up

from 0, giving the number of pixels the text drops from the baseline.

So, if you test a string containing a "y" with imageTTFbbox(), for example, the

return array might have a figure of 3 for element 1 because the tail of the "y" drops

3 pixels below the baseline. It could have a figure of − 10 for element 7 because the

text is raised 10 pixels above the baseline.

To complicate matters, there seems to be a 2-pixel difference between the baseline

as returned by imageTTFbbox() and the visible baseline when drawing text. You

may need to adjust for this, by thinking of the height of the baseline as 2 pixels

greater than that returned by the imageTTFbbox().

On the horizontal axis, figures for left-hand side imageTTFbbox() will take account

of text that begins before the given start point by returning the offset as a minus

 268

number in elements 6 and 0. This usually will be a small number so whether you

adjust alignment to take account of this depends on the level of accuracy you

require.

You can use the information returned by imageTTFbbox() to align text within an

image. Listing 14.9 creates a script that dynamically outputs text, centering it within

our image on both the vertical and horizontal planes.

Listing 14.9: Aligning Text Within a Fixed Space Using imageTTFbbox()

 1: <?php

 2: header("Content-type: image/gif");

 3: $height = 100;

 4: $width = 200;

 5: $fontsize = 50;

 6: if (! isset ($text))

 7: $text = "Change me!";

 8: $image = imagecreate($width, $height);

 9: $red = imagecolorallocate($image, 255,0,0);

10: $blue = imagecolorallocate($image, 0,0,255);

11: $font = "/usr/local/jdk121_pre-v1/jre/lib/fonts/LucidaSansRegular.ttf";

12: $textwidth = $width;

13: $textheight;

14: while (1)

15: {

16: $box = imageTTFbbox($fontsize, 0, $font, $text);

17: $textwidth = abs($box[2]);

18: $textbodyheight = (abs($box[7]))− 2;

19: if ($textwidth < $width − 20)

20: break;

21: $fontsize− − ;

22: }

23: $gifXcenter = (int) ($width/2);

 269

24: $gifYcenter = (int) ($height/2);

25: imageTTFtext($image, $fontsize, 0,

26: (int) ($gifXcenter− ($textwidth/2)),

27: (int) ($gifYcenter+(($textbodyheight)/2)),

28: $blue, $font, $text);

29: imagegif($image);

30: ?>

We store the height and width of the image in the variables $height and $width, and

set a default font size of 50. We test for the presence of a variable called $text,

setting a default if it isn't present. In this way, the image can accept data from a

Web page, either in the query string of an image URL or from form submission. We

use imagecreate() to acquire an image identifier. We acquire color identifiers in the

usual way and store the path to a TrueType font file in a variable called $font.

We want to fit the string stored in $text into the available space, but we have no way

of knowing yet whether it will. Within a while statement, we pass the font path and

string to imageTTFbbox(), storing the resultant array in a variable called $box. The

element $box[2] contains the position of the lower-right corner on the horizontal

axis. We take this to be the width of the string and store it in $textwidth.

We want to vertically center the text, but only accounting for the area above the

text's baseline. We can use the absolute value of $box[7] to find the height of the

text above the baseline, although we need to adjust this by 2 pixels. We store this

value in $textbodyheight.

Now that we have a working figure for the text's width, we can test it against the

width of the image (less 10 pixels border). If the text is smaller than the width of the

canvas we are using, then we end the loop. Otherwise, we reduce the font size,

ready to try again.

Dividing the $height and $width values by 2, we can find the approximate center

point of the image. We write the text to the image, using the figures we have

calculated for the image's center point in conjunction with the text's height and

width to calculate the offset.

 270

Finally, we write the image to the browser. Figure 14.9 shows the output from

Listing 14.9.

This code can now be called from another page as part of an IMG element. The

following fragment writes some simple code that would allow a user to add her own

string to be included in the image:

 1: <?php

 2: if (! isset($text))

 3: $text = "Dynamic text!";

 4: ?>

 5: <form action="<? print $PHP_SELF >" method="POST">

 6: <input type="text" name="text">

 7: </form>

 8: <p>

 9: <img src="eg14.9.php?<? print "text=".urlencode($text) ?>">

When we call the script in Listing 14.9, we append a query string that includes the

text to be added to the image. You can learn more about this technique for passing

information from script to script in Hour 19, "Saving State with Cookies and Query

Strings."

Figure 14.9: Aligning text within a fixed space using imageTTFbbox().

Bringing It Together
Let's build an example that uses some of the functions that we have looked at in this

 271

hour. Suppose that we have been asked to produce a dynamic bar chart that

compares a range of labeled numbers. The bar chart must include the relevant label

below each bar. Our client must be able to change the number of bars on the chart,

the height and width of the image, and the size of the border around the chart. The

bar chart will be used for consumer votes, and all that is needed is an "at a glance"

representation of the data. A more detailed breakdown will be included in the HTML

portion of the containing page.

The easiest way of storing labels and values is in an associative array. After we have

this array, we need to calculate the number of bars we will be dealing with and the

greatest value in the array:

$cells = array (liked=>200, hated=>400, indifferent=>900);

$max = max($cells);

$total = count ($cells);

We must set up some variables to allow the client to customize the image:

$totalwidth = 400;

$totalheight = 200;

$xgutter = 20; // left/right margin

$ygutter = 20; // top/bottom margin

$internalgap = 5; // space between cells

$bottomspace = 40; // gap at the bottom (in addition to margin)

$font = "/usr/local/jdk121_pre-v1/jre/lib/fonts/LucidaSansRegular.ttf";

The client can change the variables to define the image height and width. The

$xgutter and $ygutter variables determine the margin around the chart horizontally

and vertically. $internalgap determines the space between the bars. The

$bottomspace variable contains the space available to label the bars at the bottom

of the screen.

Now that we have these values, we can do some calculations to arrive at some

useful variables:

$graphCanX = ($totalwidth − $xgutter*2);

$graphCanY = ($totalheight − $ygutter*2 − $bottomspace);

$posX = $xgutter; // starting draw position x - axis

$posY = $totalheight − $ygutter − $bottomspace; // starting draw pos - y - axis

$cellwidth = (int) (($graphCanX − ($internalgap * ($total− 1))) / $total) ;

$textsize = (int)($bottomspace);

We calculate the graph canvas (the space in which the bars are to be written). On

the x axis, this will be the total width minus twice the size of the margin. On the y

axis, we need also to take account of the $bottomspace variable to leave room for

the labels.

 272

$posX stores the point on the x axis at which we will start drawing the bars, so we

set this to the same value as $xgutter, which contains the value for the margin on

the $x axis. $posY stores the bottom point of our bars; it is equivalent to the total

height of the image less the margin and the space for the labels stored in

$bottomheight.

$cellwidth contains the width of each bar. To arrive at this value, we must calculate

the total amount of space between bars and take this from the chart width, dividing

this result by the total number of bars.

We initially set the size of the text to be the same as the height left free for label text

(as stored in $bottomspace).

Before we can create and work with our image, we need to determine the text size.

Our problem is that we don't know how long the labels will be, and we want to make

sure that each of the labels will fit within the width of the bar above it. We loop

through the $cells array to calculate the maximum text size we can use:

while (list($key, $val) = each ($cells))

 {

 while (1)

 {

 $box = ImageTTFbBox($textsize, 0, $font, $key);

 $textWidth = $box[2];

 if ($textWidth <$cellwidth)

 break;

 $textsize− − ;

 }

 }

For each of the elements, we begin a loop, acquiring dimension information for the

label using imageTTFbbox(). We take the text width to be $box[2] and test it

against the $cellwidth variable, which contains the width of a single bar in the chart.

We break the loop if the text is smaller than the bar width; otherwise, we decrement

$textsize and try again. $textsize continues to shrink until every label in the array

fits within the bar width.

Now, at last we can create an image identifier and begin to work with it:

$image = imagecreate($totalwidth, $totalheight);

$red = ImageColorAllocate($image, 255, 0, 0);

$blue = ImageColorAllocate($image, 0, 0, 255);

$black = ImageColorAllocate($image, 0, 0, 0);

reset ($cells);

while (list($key, $val) = each ($cells))

 273

 {

 $cellheight = (int) (($val/$max) * $graphCanY);

 $center = (int)($posX+($cellwidth/2));

 imagefilledrectangle($image, $posX, ($posY− $cellheight),

 ($posX+$cellwidth), $posY, $blue);

 $box = ImageTTFbBox($textsize, 0, $font, $key);

 $tw = $box[2];

 ImageTTFText($image, $textsize, 0, ($center− ($tw/2)),

 ($totalheight− $ygutter), $black, $font, $key);

 $posX += ($cellwidth + $internalgap);

 }

imagegif($image);

We begin by creating an image identifier with imagecreate() and allocate some

colors. Once again, we loop through our $cells array. We calculate the height of the

bar, storing the result in $cellheight. We calculate the center point (on the x axis) of

the bar, which is $posX plus half the width of the bar.

We draw the bar, using imagefilledrectangle() and the variables $posX, $posY,

$cellheight, and $cellwidth.

To align our text, we need imageTTFbbox() once again, storing its return array in

$box. We use $box[2] as our working width and assign this to a temporary variable,

$tw. We now have enough information to write the label. We derive our x position

from the $center variable minus half the width of the text, and our y position from

the image's height minus the margin.

We increment $posX ready to start working with the next bar.

Finally, we output the image.

You can see the complete script in Listing 14.10 and sample output in Figure 14.10.

Listing 14.10: A Dynamic Bar Chart

 1: <?php

 2: header("Content-type: image/gif");

 3: $cells = array (liked=>200, hated=>400, indifferent=>900);

 4: $max = max($cells);

 5: $total = count ($cells);

 6: $totalwidth = 300;

 7: $totalheight = 200;

 8: $xgutter = 20; // left/right margin

 9: $ygutter = 20; // top/bottom margin

10: $internalgap = 10; // space between cells

 274

11: $bottomspace = 30; // gap at the bottom (in addition to margin)

12: $font = "/usr/local/jdk121_pre-v1/jre/lib/fonts/LucidaSansRegular.ttf";

13: $graphCanX = ($totalwidth − $xgutter*2);

14: $graphCanY = ($totalheight − $ygutter*2 − $bottomspace);// starting draw

 position x - axis

15: $posX = $xgutter; // starting draw pos - y - axis

16: $posY = $totalheight − $ygutter − $bottomspace;

17: $cellwidth = (int) (($graphCanX − ($internalgap * ($total− 1)))

 / $total) ;

18: $textsize = (int)($bottomspace);

19: // adjust font size

20: while (list($key, $val) = each ($cells))

21: {

22: while (1)

23: {

24: $box = ImageTTFbBox($textsize, 0, $font, $key);

25: $textWidth = abs($box[2]);

26: if ($textWidth < $cellwidth)

27: break;

28: $textsize− − ;

29: }

30: }

31: $image = imagecreate($totalwidth, $totalheight);

32: $red = ImageColorAllocate($image, 255, 0, 0);

33: $blue = ImageColorAllocate($image, 0, 0, 255);

34: $black = ImageColorAllocate($image, 0, 0, 0);

35: $grey = ImageColorAllocate($image, 100, 100, 100);

36: reset ($cells);

37: while (list($key, $val) = each ($cells))

38: {

39: $cellheight = (int) (($val/$max) * $graphCanY);

40: $center = (int)($posX+($cellwidth/2));

41: imagefilledrectangle($image, $posX, ($posY− $cellheight), ($posX+$cell

 width), $posY, $blue);

42: $box = ImageTTFbBox($textsize, 0, $font, $key);

43: $tw = $box[2];

44: ImageTTFText($image, $textsize, 0, ($center− ($tw/2)),

45: ($totalheight− $ygutter), $black, $font, $key);

 275

46: $posX += ($cellwidth + $internalgap);

47: }

48: imagegif($image);

49: ?>

Figure 14.10: A dynamic bar chart.

Summary

PHP's support for the GD library enables you to produce dynamic charts and

navigation elements with relative ease.

In this hour, you learned how to use imagecreate() and imagegif() to create and

output an image. You learned how to acquire color identifiers with

imagecolorallocate() and to use color identifiers with imagefill() to fill areas with

color. You learned how to use line and shape functions to create outline and filled

shapes. You learned how to use PHP's support for the FreeType library to work with

TrueType fonts, and worked through an example that wrote text to an image. Finally,

you worked through a bar chart example that brought some of these techniques

together into a single script.

Q&A

Q Are there any performance issues with regard to dynamic images?

 276

A A dynamically created image will be slower to arrive at the browser than an image

that already exists. Depending on the efficiency of your script, the impact is not

likely to be noticeable to the user if you use dynamic images sparingly.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

What header should you send to the browser before building and outputting a

GIF image?

What function would you use to acquire an image identifier that you can use with

other image functions?

What function would you use to output your GIF after building it?

What function could you use to acquire a color identifier?

With which function would you draw a line on a dynamic image?

What function would you use to fill an area in a dynamic image?

What function might you use to draw an arc?

How might you draw a rectangle?

How would you draw a polygon?

What function would you use to write a string to a dynamic image (utilizing the

FreeType library)?

Activities

Write a script that creates a "progress bar" such as might be used on a

fund-raising site to indicate how much money has been raised in relation to the

target.

Write a script that writes a headline image based on input from a form or query

string. Allow user input to determine the canvas size, background and

foreground colors, and the presence and offset of a drop shadow.

 277

Hour 15: Working with Dates

Overview

Dates are so much part of everyday life that it becomes easy to work with them

without thinking. The quirks of our calendar can be difficult to work with in programs,

though. Fortunately, PHP provides powerful tools for date arithmetic that make

manipulating dates easy.

In this chapter, you will learn

How to acquire the current date and time

How to get information about a date

How to format date information

How to test dates for validity

How to set dates

How to build a simple calendar script

Getting the Date with time()
PHP's time() function gives you all the information that you need about the

current date and time. It requires no arguments but returns an integer. This number

is a little hard on the eyes, for us humans, but extremely useful nonetheless.

print time();

// sample output: 948316201

The integer returned by time() represents the number of seconds elapsed since

midnight GMT on January 1, 1970. This moment is known as the UNIX epoch, and

the number of seconds that have elapsed since then is referred to as a time stamp.

PHP offers excellent tools to convert a time stamp into a form that humans are

comfortable with. Even so, isn't a time stamp a needlessly convoluted way of storing

a date? In fact, the opposite is true. From just one number, you can extract

enormous amounts of information. Even better, a time stamp can make date

arithmetic much easier than you might imagine.

Think of a homegrown date system in which you record days of the month, as well

as months and years. Now imagine a script that needs to add one day to a given

date. If this date happened to be 31 December 1999, rather than add 1 to the date,

you would have to write code to set the day of the month to 1, the month to January,

and the year to 2000. Using a time stamp, you need only add a day's worth of

seconds to your current figure, and you are done. You can convert this new figure

 278

into something more friendly at your leisure.

Converting a Time Stamp with getdate()
Now that you have a time stamp to work with, you must convert it before you

present it to the user. getdate() optionally accepts a time stamp and returns an

associative array containing information about the date. If you omit the time stamp,

it works with the current time stamp as returned by time(). Table 15.1 lists the

elements contained in the array returned by getdate().

Table 15.1: The Associative Array Returned by getdate()

Key Description Example

seconds Seconds past the

minutes (0–59)

28

minutes Minutes past the

hour (0–59)

7

hours Hours of the day

(0–23)

12

mday Day of the month

(1–31)

20

wday Day of the week

(0–6)

4

mon Month of the year

(1–12)

1

year Year (4 digits) 2000

yday Day of year

(0–365)

19

weekday Day of the week

(name)

Thursday

month Month of the year

(name)

January

0 Timestamp 948370048

Listing 15.1 uses getdate() to extract information from a time stamp, using a

foreach statement to print each element. You can see a typical output in Figure

15.1. getdate() returns the date according to the local time zone.

Listing 15.1: Acquiring Date Information with getdate()

 1: <html>

 279

 2: <head>

 3: <title>Listing 15.1 Acquiring date information with getdate()</title>

 4: </head>

 5: <body>

 6: <?php

 7: $date_array = getdate(); // no argument passed so today's date will be used

 8: foreach ($date_array as $key => $val)

 9: {

10: print "$key = $val
";

11: }

12: ?>

13: <hr>

14: <?

15: print "Today's date: $date_array[mday]/$date_array[mon]/

 $date_array[year]<p>";

16: ?>

17: </body>

18: </html>

Converting a Time Stamp with date()
You can use getdate() when you want to work with the elements that it outputs.

Sometimes, though, you only want to display the date as a string. The date()

function returns a formatted string representing a date. You can exercise an

enormous amount of control over the format that date() returns with a string

argument that you must pass to it.

Figure 15.1: Using getdate().

In addition to the format string, date() optionally accepts a time stamp. Table

 280

15.2 lists the codes that a format string can contain. Any other data you include in

the format string passed to date() will be included in the return value.

Table 15.2: Format Codes for Use with date()

Format Description Example

a 'am' or 'pm'

lowercase

pm

A 'AM' or 'PM'

uppercase

PM

d Day of month

(number with

leading zeroes)

20

D Day of week (three

letters)

Thu

F Month name January

h Hour (12-hour

format— leading

zeroes)

12

H Hour (24-hour

format— leading

zeroes)

12

g Hour (12-hour

format— no leading

zeroes)

12

G Hour (24-hour

format— no leading

zeroes)

12

i Minutes 47

j Day of the month

(no leading zeroes)

20

1 Day of the week

(name)

Thursday

L Leap year ('1' for

yes, '0' for no)

1

m Month of year

(number— leading

zeroes)

01

 281

M Month of year (three

letters)

Jan

n Month of year

(number— no

leading zeroes)

1

s Seconds of hour 24

U Time stamp 948372444

y Year (two digits) 00

Y Year (four digits) 2000

z Day of year (0–365) 19

Z Offset in seconds

from GMT

0

Listing 15.2 puts a few format codes to the test.

Listing 15.2: Formatting a Date with date()

 1: <html>

 2: <head>

 3: <title>Listing 15.2 Formatting a date with date()</title>

 4: </head>

 5: <body>

 6: <?php

 7: print date("m/d/y G.i:s
", time());

 8: // 01/20/00 13.27:55

 9: print "Today is ";

10: print date("j of F Y, \a\\t g.i a", time());

11: // Today is 20 of January 2000, at 1.27 pm

12: ?>

13: </body>

14: </html>

Although the format string looks arcane, it is easy to build. If you want to add a

string to the format that contains letters that are format codes, you can escape

them by placing a backslash (\) in front of them. For characters that become control

characters when escaped, you must escape the backslash that precedes them. "\n"

should become "\\n", for example, if you want to include an "n" in the format string,

date() returns information according to your local time zone. If you want to

 282

format a date in GMT, you should use the gmdate() function, which works in

exactly the same way.

Creating Time Stamps with mktime()

You can already get information about the current time, but you cannot yet work

with arbitrary dates. mktime() returns a time stamp that you can then use with

date() or getdate(). mktime() accepts up to six integer arguments in the

following order:

hour

minute

second

month

day of month

year

Listing 15.3 uses mktime() to get a time stamp that we then use with the date()

function.

Listing 15.3: Creating a Time Stamp with mktime()

 1: <html>

 2: <head>

 3: <title>Listing 15.3 Creating a timestamp with mktime()</title>

 4: </head>

 5: <body>

 6: <?php

 7: // make a timestamp for 1/5/99 at 2.30 am

 8: $ts = mktime(2, 30, 0, 5, 1, 1999);

 9: print date("m/d/y G.i:s
", $ts);

10: // 05/01/99 2.30:00

11: print "The date is ";

12: print date("j of F Y, \a\\t g.i a", $ts);

13: // The date is 1 of May 1999, at 2.30 am

14: ?>

 283

15: </body>

16: </html>

You can choose to omit some or all of the arguments to mktime(), and the value

appropriate to the current time will be used instead. mktime() will also adjust for

values that go beyond the relevant range, so an hour argument of 25 will translate

to 1.00am on the day after that specified in the month, day, and year arguments.

Testing a Date with checkdate()

You may need to accept date information from user input. Before you work with this

date, or store it in a database, you should check that the date is valid. checkdate()

accepts three integers: month, day, and year. checkdate() returns true if the

month is between 1 and 12, the day is acceptable for the given month and year

(accounting for leap years, and the year is between 0 and 32767. Be careful, though,

a date may well be valid but not acceptable to other date functions. For example,

the following line returns true:

checkdate(4, 4, 1066)

If you were to attempt to build a date with mktime() using these values, you would

end up with a time stamp of − 1. As a rule of thumb, do not use mktime() with

years below 1902 and be cautious of using date functions with any date before

1970.

An Example

Let's bring most of these functions together into an example. We are going to build

a calendar that can display the dates for any month between 1980 and 2010. The

user will be able to select both month and year with pull-down menus, and the dates

for that month will be organized according to the days of the week. We will use two

global variables $month and $year, which should be filled by data by the user. We

will use these to build a time stamp based on the first day of the month defined. If

the input is invalid or absent, we will default to the first day of the current month.

 284

Checking User Input

When the user comes to our page for the first time, he or she will not be submitting

any information. We must therefore make sure that our script can handle the fact

that the $month and $year variables may not be defined. We could use the isset()

function for this. isset() returns false if the variable it has been passed has not been

defined. However, we choose instead to use checkdate(). Listing 15.4 shows the

fragment of code that checks the $month and $year variables and builds a time

stamp based on them.

Listing 15.4: Checking User Input for the Calendar Script

 1: <?php

 2: if (! checkdate($month, 1, $year))

 3: {

 4: $nowArray = getdate();

 5: $month = $nowArray[mon];

 6: $year = $nowArray[year];

 7: }

 8: $start = mktime (0, 0, 0, $month, 1, $year);

 9: $firstDayArray = getdate($start);

10: ?>

Listing 15.4 is a fragment of a larger script so it does not produce any output itself.

In our if statement, we use checkdate() to test the $month and $year variables. If

they have not been defined, checkdate() returns false because you cannot make a

valid date from undefined month and year arguments. This approach has the added

bonus of ensuring that data that has been submitted by the user will make a valid

date.

If the date is not valid, we use getdate() to create an associative array based on the

current time. We then set values for $month and $year ourselves, using the array's

mon and year elements.

 285

Now that we are sure that we have valid data in $month and $year, we can use

mktime() to create a time stamp for the first day of the month. We will need

information about this time stamp later on, so we create a variable called

$firstDayArray that will store an associative array returned by getdate() and based

on this time stamp.

Building the HTML Form

We need to create an interface by which users can ask to see data for a month and

year. For this, we will use SELECT elements. Although we could hard-code these in

HTML, we must also ensure that the pull-downs default to the currently chosen

month, so we will dynamically create these pull-downs, adding a SELECT attribute

to the OPTION element where appropriate. The form is generated in Listing 15.5.

Listing 15.5: Building the HTML Form for the Calendar Script

 1: <?php

 2: if (! checkdate($month, 1, $year))

 3: {

 4: $nowArray = getdate();

 5: $month = $nowArray[mon];

 6: $year = $nowArray[year];

 7: }

 8: $start = mktime (0, 0, 0, $month, 1, $year);

 9: $firstDayArray = getdate($start);

10: ?>

11: <html>

12: <head>

13: <title><?php print "Calendar: $firstDayArray[month]

14: $firstDayArray[year]" ?></title>

15: <head>

16: <body>

17: <form method="post">

18: <select name="month">

 286

19: <?php

20: $months = Array("January", "February", "March", "April",

21: "May", "June", "July", "August", "September",

22: "October", "November", "December");

23: for ($x=1; $x <= count($months); $x++)

24: {

25: print "\t<option value=\"$x\"";

26: print ($x == $month)?" SELECTED":"";

27: print ">".$months[$x− 1]."\n";

28: }

29: ?>

30: </select>

31: <select name="year">

32: <?php

33: for ($x=1980; $x<2010; $x++)

34: {

35: print "\t<option";

36: print ($x == $year)?" SELECTED":"";

37: print ">$x\n";

38: }

39: ?>

40: </select>

41: <input type="submit" value="Go!">

42: </form>

43: </body>

44: </html>

Having created the $start time stamp and the $firstDayArray date array, we go on

to write the HTML for the page. Notice that we use $firstDayArray to add the month

and year to the TITLE element. In previous examples we have used the global

 287

variable $PHP_SELF within the FORM element to ensure that the form will call itself

when submitted. In our script we have taken advantage of the fact that leaving the

ACTION argument out of a FORM tag will cause the form to submit to its containing

page by default. To create the SELECT element for the month pull-down, we drop

back into PHP mode to write the individual OPTION tags. First we create an array

called $months that contains the 12 month names. We then loop through this,

creating an OPTION tag for each one. This would probably be an overcomplicated

way of writing a simple SELECT element were it not for the fact that we are testing

$x (the counter variable in the for statement) against the $month variable. If $x and

$month are equivalent, we add the string SELECTED to the OPTION tag, ensuring

that the correct month will be selected automatically when the page loads. We use

a similar technique to write the year pull-down. Finally, back in HTML mode, we

create a submit button.

We should now have a form that can send the month and year parameters to itself,

and will default either to the current month and year, or the month and year

previously chosen. You can see this in Figure 15.2.

Figure 15.2: The calendar form.

Creating the Calendar Table

We now need to create a table and populate it with dates for the chosen month. We

do this in Listing 15.6, which represents the complete calendar script.

Listing 15.6: The Complete Calendar Script

 1: <?php

 2: define("ADAY", (60*60*24));

 288

 3: if (! checkdate($month, 1, $year))

 4: {

 5: $nowArray = getdate();

 6: $month = $nowArray[mon];

 7: $year = $nowArray[year];

 8: }

 9: $start = mktime (0, 0, 0, $month, 1, $year);

10: $firstDayArray = getdate($start);

11: ?>

12: <html>

13: <head>

14: <title><?php print "Calendar: $firstDayArray[month]

15: $firstDayArray[year]" ?></title>

16: <head>

17: <body>

18: <form action="<? print $PHP_SELF ?>" method="post">

19: <select name="month">

20: <?php

21: $months = Array("January", "February", "March", "April",

22: "May", "June", "July", "August", "September",

23: "October", "November", "December");

24: for ($x=1; $x <= count($months); $x++)

25: {

26: print "\t<option value=\"$x\"";

27: print ($x == $month)?" SELECTED":"";

28: print ">".$months[$x− 1]."\n";

29: }

30: ?>

31: </select>

32: <select name="year">

 289

33: <?php

34: for ($x=1980; $x<2010; $x++)

35: {

36: print "\t<option";

37: print ($x == $year)?" SELECTED":"";

38: print ">$x\n";

39: }

40: ?>

41: </select>

42: <input type="submit" value="Go!">

43: </form>

44: <p>

45: <?php

46: $days = Array("Sunday", "Monday", "Tuesday", "Wednesday",

47: "Thursday", "Friday", "Saturday");

48: print "<TABLE BORDER = 1 CELLPADDING=5>\n";

49: foreach ($days as $day)

50: print "\t<td>$day</td>\n";

51: for ($count=0; $count < (6*7); $count++)

52: {

53: $dayArray = getdate($start);

54: if ((($count) % 7) == 0)

55: {

56: if ($dayArray[mon] != $month)

57: break;

58: print "</tr><tr>\n";

59: }

60: if ($count < $firstDayArray[wday] || $dayArray[mon] != $month)

61: {

62: print "\t<td>
</td>\n";

 290

63: }

64: else

65: {

66: print "\t<td>$dayArray[mday] $dayArray[month]</td>\n";

67: $start += ADAY;

68: }

69: }

70: print "</tr></table>";

71: ?>

72: </body>

73: </html>

74:

Because the table will be indexed by days of the week, we loop through an array of

day names, printing each to its own cell. All the real magic of the script happens in

the final for statement.

We initialize a variable called $count and ensure that the loop will end after 42

iterations. This is to make sure that we will create enough cells to populate with date

information. Within the loop, we transform the $start variable into a date array with

getdate(), assigning the result to $dayArray. Although $start is the first day of the

month during the loop's initial execution, we will increment this time stamp by 24

hours for every iteration.

We test the $count variable against 7 using the modulus operator. The block of code

belonging to this if statement will therefore only be run when $count is either 0 or a

multiple of 7. This is our way of knowing whether we should end the loop altogether

or start a new row.

After we have established that we are in the first iteration or at the end of a row, we

can go on to make another test. If the mon (month number) element of the

$dayArray is no longer equivalent to the $month variable, we must have finished.

Remember that $dayArray contains information about the $start time stamp, which

is in turn our current place in the month that we are displaying. When $start goes

beyond the current month, $dayArray[mon] will hold a different figure than the

 291

$month number provided by user input. Our modulus test demonstrated that we are

at the end of a row, and the fact that we are in a new month means that we can

leave the loop altogether.

Assuming, however, that we are still in the month that we are displaying, we end the

row and start a new one.

In the next if statement, we determine whether to write date information to a cell.

Not every month begins on a Sunday, so it's likely that we will start with an empty

cell or two. Few months will finish at the end of one of our rows, so it's also likely

that we will need to write a few empty cells before we close the table. We have

stored information about the first day of the month in $firstDayArray; in particular,

we can access the number of the day of the week in $firstDayArray[wday]. If $count

is smaller than this number, then we know that we haven't yet reached the correct

cell for writing. By the same token, if the $month variable is no longer equal to

$dayArray[mon], we know that we have reached the end of the month (but not the

end of the row, as we determined in our earlier modulus test). In either case, we

write an empty cell to the browser.

In the final else clause, we can do the fun stuff. We have already ascertained that we

are within the month that we want to list and that the current day column matches

the day number stored in $firstDayArray[wday]. Now we must use the $dayArray

associative array that we established early in the loop to write the day of the month

and the month name to a cell.

Finally, we need to increment the $start variable, which contains our date stamp.

We simply add the number of seconds in a day to it (we have defined this value at

the top of the script), and we're ready to begin the loop again with a new value in

$start to be tested. You can see the output from a call to this script in Figure 15.3.

 292

Figure 15.3: The calendar script

Summary

In this hour, you learned how to use time() to get a date stamp for the current date

and time. You learned how to use getdate() to extract date information from a time

stamp and date() to convert a time stamp into a formatted string. You learned how

to create a time stamp using mktime(). You learned how to test a date for validity

with checkdate(). Finally, you worked through an example script, which applies

some of the tools you have looked at.

Q&A

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Q Are there any functions for converting between different calendars?

A Yes. PHP provides an entire suite of functions that cover alternative calendars.

You can read about these in the official PHP manual at

http://www.php.net/manual/ref.calendar.php.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

How would you acquire a UNIX time stamp representing the current date and

time?

What function accepts a time stamp and returns an associative array

representing the given date?

What function would you use to format date information?

How would you acquire a time stamp for an arbitrary date?

What function could you use to check the validity of a date?

 293

Activity

Create a birthday countdown script. Given form input of month, day, and year,

output a message that tells the user how many days, hours, minutes, and

seconds until the big day.

 294

Hour 16: Working with Data

Overview

In this hour, we are going to delve a little deeper into data testing and manipulation.

We will look again at data types. PHP handles data types for you automatically, but

an understanding of how data is handled in your scripts is essential if you are to

build robust online applications. We will also return to arrays and discover some of

the more advanced features that PHP provides to manipulate and sort these data

types.

In this hour, you will learn

How to convert data from one type to another

How PHP automatically converts data for you in expressions

More ways of testing data types

Why an understanding of data types can be useful

How to test whether a variable has been set

Another method of traversing an array

How to check that an element exists in an array

How to transform every element in an array

How to custom sort arrays

Data Types Revisited

You learned about PHP's data types in some detail in Hour 4, "The Building Blocks."

There is a little more ground to cover, however. This section examines a few more

functions for checking the data type of a variable and looks at the conditions under

which PHP automatically converts data types for you.

A Recap

You already know that PHP variables can contain values that are integers, doubles,

strings, booleans, objects, or arrays. You can test the type of any variable with the

gettype() function. gettype() requires a value of any type, and returns a string

describing the value's data type:

 295

$data = 454;

print gettype($data);

// prints "integer"

You can change variables from one type to another, either by casting or with the

settype() function. To cast a function, place the name of a data type in brackets

before the variable or value you want to convert. By casting a variable, you do not

change the contents of a variable in any way. Instead, a converted copy is returned

to you. The following code fragment casts a double to an integer:

$data = 4.333;

print (integer) $data;

// prints 4

The $data variable still contains the double that we assigned to it. We have merely

printed the return value of the cast.

To transform the type of a variable, you can use the settype() function. settype()

requires the name of a data type and a variable to convert:

$data = 4.333;

settype($data, integer);

print $data;

// prints 4

The $data variable now contains an integer. settype() is a rare function in PHP in

that it transforms one of the arguments you pass it in your scope as well as its own.

Converting Complex Types

You have already looked in some detail at the process of converting between simple

data types (scalars and strings). What happens when you convert between simple

data types such as doubles or integers and more complex types such as objects and

arrays?

When you cast a simple data type to an array, an array is created, with the original

value in the first element:

$str = "this is my string";

$arr_str = (array) $str;

 296

print $arr_str[0];

// prints "this is my string"

When you cast a scalar or string variable to an object, an object is created with a

single property called scalar. This contains the original value:

$str = "this is my string";

$arr_str = (object) $str;

print $arr_str->scalar;

// prints "this is my string"

Things get a little more interesting when you convert between arrays and objects.

When you convert an array to an object, a new object is created with a property for

each key in the array:

$addresses = array (street => "Williams Street", town => "Stockton");

$obj_addresses = (object) $addresses;

print $obj_addresses->street;

// prints "Williams Street"

Conversely, converting an object to an array creates an array with an element for

each object property. Methods are discarded.

class Point

 {

 var $x;

 var $y;

 function Point($x, $y)

 {

 $this->x = $x;

 $this->y = $y;

 }

 }

$point = new Point(5, 7);

$array_point = (array) $point;

print $array_point[x];

// prints 5

 297

Automatic Conversion of Data Types

If you build an expression that has values of two different data types as operands,

PHP automatically converts one to the type of the other to arrive at a result. You

have probably taken advantage of this already without thinking about it. Variables

compiled from form input will always be strings, but you might have used them in a

test expression or a calculation as if they were numbers.

Suppose that you have asked a user to tell the number of hours they spend online

a week, storing the input in a variable called $hours. This initially will be stored as a

string.

$hours = "15";

if ($hours == 15)

 print "As a frequent user you may qualify for a discount";

In the test for equivalence, the string "15" is cast to an integer, and the test

expression resolves to true.

The rules for automatic conversion are relatively simple. In the context of integers

or doubles, strings will be converted according to their contents. If a string begins

with an integer, it will be converted to that number. So the following line will give

80:

4 * "20mb";

If a string does not begin with a number, it will be converted to 0. So this line will

give 0:

4 * "about 20mb";

If a string contains a number followed by a dot, it will be converted into a double. So

the following example will give 4.8:

4 * "1.2";

The autoincrement and autodecrement operators are a special case when applied to

strings. Incrementing a string adds 1 to the converted value of the string as you

would expect, but only if the string contains nothing but numbers. The new value

will itself be a string:

$str = "4";

 298

$str++;

print $str; // prints 5

print gettype($str); // prints "string"

If you attempt to autoincrement a string that contains letters, the final character

alone will be incremented:

$str = "hello";

$str++;

print $str; // prints "hellp"

Compare this with another approach to incrementing a string:

$str = "hello";

$str += 1;

print $str; // prints 1;

print gettype($str); // prints "integer"

In the previous example, $str is converted to the integer 0 when we add 1 to it. The

result of this operation, 1, is stored back in $str. $str will now hold an integer.

Automatic conversions between integers and doubles are more straightforward. If

either operand in an expression is a double, then the other operand will be

converted to a double, and the result will be a double:

$result = (1 + 20.0);

print gettype ($result);

// prints "double"

It is important to note that when automatic conversions occur for the purposes of

evaluating an expression, neither operand in the expression is itself changed. If an

operand needs to be converted, it is a transformed copy that will be used as part of

the expression.

Testing Data Types

You've already seen that you can test any data type with the gettype() function.

This is useful for debugging because it tells you exactly what type any variable is.

Often, though, you will only want to check whether a variable contains a specific

type. PHP provides a special function corresponding to each data type. These

 299

functions accept a variable or value and return a boolean. Table 16.1 lists these

functions.

Table 16.1: Functions to Test Data Types

Function Description

is_array() Returns true if

the argument is

an array

is_bool() Returns true if

the argument is

boolean

is_double() Returns true if

the argument is

a double

is_int() Returns true if

the argument is

an integer

is_object() Returns true if

the argument is

an object

is_string() Returns true if

the argument is

a string

These functions make testing data types a little easier.

if (gettype($var) == "array")

 print "it's an array";

is equivalent to

if (is_array($var))

 print "it's an array";

The second way of testing the $var variable is a little more compact and is nicely

intuitive.

 300

More Ways of Changing Type

You have already seen two ways of converting data types. You can either cast a

value or use the settype() function. In addition to these techniques, PHP provides

functions to convert values into integers, doubles, and strings. These functions

accept values of any type apart from array or object and return a converted value.

Table 16.2 lists these functions.

Table 16.2: Functions to Convert Data Types

Function Description

doubleval() Accepts a value

and returns

double

equivalent

intval() Accepts a value

and returns

integer

equivalent

strval() Accepts a value

and returns

string

equivalent

Why Are Data Types Important?

PHP does not demand that you declare a data type when you create a variable. It

implicitly converts types for you when you use variables of different data types in

expressions. If PHP makes things so easy, why is it important to be able to keep

track of the types of data you are storing?

It is often a good idea to keep track of the data that your variables store to prevent

errors. Imagine that you are writing a function that prints the keys and values of an

array to the browser. PHP is relaxed about arguments to functions, so you can't

demand that the calling code pass you an array when you declare your function.

function printArray($array)

 301

 {

 foreach ($array as $key => $val)

 print "$key: $val<P>";

 }

The preceding function will work nicely if the function is called with an array

argument.

printArray(array(4, 4, 55));

If you carelessly pass a scalar, you will get an error, as in the following example:

printArray(4);

// Warning: Non array argument supplied for foreach() in

// /home/matt/htdocs/php-book/data/test2.php on line 5

By testing the data type of the supplied argument, you can make the function more

accommodating. You could make the function quietly return if it receives a scalar

value:

function printArray($array)

 {

 if (! is_array($array))

 return false;

 foreach ($array as $key => $val)

 print "$key: $val<P>";

 return true;

 }

The calling code can now test the return value of the function to ascertain whether

it was able to complete its task.

You could even use a cast to convert scalar data into an array:

function printArray($array)

 {

 if (! is_array($array))

 $array = (array) $array;

 foreach ($array as $key => $val)

 302

 print "$key: $val<P>";

 return true;

 }

The printArray() function has become vastly more flexible. It will now output any

data type in an array context, even an object.

Checking data types can also be useful when testing the return value of some

functions. Some languages, such as Java, always return a predetermined data type

from any method. PHP has no such restriction. This flexibility can occasionally lead

to ambiguities.

You saw an example of this in Hour 10, "Working with Files." The readdir() function

returns false when it has reached the end of the directory that you are reading, and

a string containing the name of an item in the directory at all other times.

Traditionally, you would use a construction similar to

$dh = opendir("mydir");

while ($name = readdir($dh))

 print "$name
";

closedir($dh);

to read the items in a directory. If a directory is named 0, however, the while

statement's test expression will evaluate this string to false, ending the listing. By

testing the data type of the return value of readdir(), you can circumvent this

problem:

$dh = opendir("mydir");

while (is_string($name = readdir($dh)))

 print "$name
";

closedir($dh);

Testing for Absence and Emptiness

Testing the data type of variables can be useful, but you must first be sure that a

variable exists and, if it does exist, that a value has been assigned to it. You can do

this with the isset() function. isset() requires a variable and returns true if the

variable contains a value:

$notset;

 303

if (isset($notset))

 print "\$notset is set";

else

 print "\$notset is not set";

// prints "$notset is not set"

A variable that is declared but has not yet been assigned a value will not be

recognized as set.

You should be aware of one danger, however. If you assign 0 or an empty string to

a variable, it will be recognized as having been set:

$notset = "";

if (isset($notset))

 print "\$notset is set";

else

 print "\$notset is not set";

// prints "$notset is set"

Variables that have been initialized as a result of form submissions will always be set,

even if the user did not add any data to a field. To deal with situations like this, you

must test whether a variable is empty. empty() accepts a variable and returns true

if the variable is not set, or if it contains data other than 0 or an empty string. It also

returns true if the variable contains an empty array:

$notset = "";

if (empty($notset))

 print "\$notset is empty";

else

 print "\$notset contains data";

// prints "$notset is empty"

More About Arrays

 304

In Hour 7, "Arrays," we introduced arrays and some of the functions that you can

use to work with them. This section introduces some more functions and

techniques.

An Alternative Approach to Traversing Arrays

PHP4 introduced the foreach statement, a powerful tool for reading array elements.

We use this in most of the examples in this book. For scripts written in PHP3, it was

necessary to use a different technique to traverse arrays. If you intend to distribute

scripts that should be compatible with PHP3 or are interested in learning from

source code that was written before the release of PHP4, it is essential that you

know about this.

When you create an array, PHP maintains an internal pointer that initially points at

the first element in the array. You can access this element's key and value with a

function called each(). each() requires an array variable and returns a four-element

array. Two of these elements will be numerically indexed, and two will be labeled

with the names "key" and "value," respectively. After each() has been called, the

internal pointer moves on to the next element in the array that you are examining,

unless the end of the array has been reached, in which case the function returns

false. Let's create an array and try out the each() function:

$details = array(school => "Slickly High", course => "Selective Indifference");

$element = each($details);

print "$element[0]
"; // prints "school"

print "$element[1]<P>"; // prints "Slickly High"

print "$element[key]
"; // prints "school"

print "$element[value]
"; // prints "Slickly High"

We initialize an array called $details with two elements. We then pass $details to the

each() function, storing the return value in a new array called $element. The

$element array holds the key and value of the first element of the $details.

Assigning the array returned by each() to an array variable is cumbersome.

Fortunately, PHP provides the list() function. list() accepts any number of variables

and populates each of them with the corresponding values from an array value:

$array = array(44, 55, 66, 77);

list($first, $second) = $array;

 305

print "$first"; // prints 44

print "
";

print "$second"; // prints 55

Notice how we were able to copy the first two elements of the array in the previous

example into named variables using the list() function.

We can use the list() function to assign values to two variables every time each() is

called. We can then work with these, just as we would in a foreach statement.

$details = array(school => "Slickly High",

 course => "Selective Indifference");

while (list ($key, $value) = each($details))

 print "$key: $value
";

Although this code will work, a line still is missing. If your array has been traversed

before, the internal pointer will still be set beyond the last element. You can set the

internal pointer back to the beginning of an array with the reset() function. reset()

requires an array variable as its argument.

So, the more familiar construction

foreach($details as $key => $value)

 print "$key: $value
";

is equivalent to

reset($details);

while (list ($key, $value) = each($details))

 print "$key: $value
";

Checking That a Value Exists in an Array

Prior to PHP4, if you needed to check whether a value existed in an array, you had

to traverse the array until you had either found a match or reached the last element.

PHP4 provides the in_array() function. in_array() requires two arguments, the

value for which you are searching and the array you want to search. The function

returns true if the value is found with the given array and false otherwise.

$details = array(school => "Slickly High",

 306

 course => "Selective Indifference");

if (in_array("Selective Indifference", $details))

 print "This course has been suspending pending investigation<P>\n";

Removing an Element from an Array

You can remove any element from an array with the unset() function. unset()

requires a variable or an array element as an argument and will unceremoniously

destroy it. If the argument is an array element, the array will be automatically

shortened.

unset($test[address]);

unset($numbers[1]);

One potential pitfall with unset() is the fact that array indices are not subsequently

changed to reflect the new size of the array. So, having removed $numbers[1] in

the previous example, the $numbers array might now look something like this:

$numbers[0]

$numbers[2]

$numbers[3]

You can still loop through this with a foreach statement without problems, however.

Applying a Function to Every Element in an Array

You can change a scalar variable easily in an expression. Applying a change to every

element of an array is a little more difficult. If you want to add a number to the value

of every array element, for example, one solution would be to loop through the

array updating each element. PHP provides a neater answer, however.

The array_walk() function passes the key and value of every element in an array to

a user-defined function. array_walk() requires an array variable, a string

representing the name of a function, and an optional additional argument that will

be passed to the function you have chosen.

Let's create an example. We have an array of prices acquired from a database, but

before working with it we need to add sales tax to each price. First, we should create

the function to add the tax:

 307

function add_tax(&$val, $key, $tax_pc)

 {

 $val += (($tax_pc/100) * $val);

 }

Any function to be used with array_walk() should expect arguments representing a

key, a value, and, optionally, a further argument.

If you want to change the value that is passed to your function, you need to append

an ampersand to the argument in the function declaration. This ensures that the

value will be passed by reference and any changes you make to the value within the

function will be reflected in the array. That is why our add_tax() function does not

return a value.

Now that we have created the function, we can call it via array_walk():

function add_tax(&$val, $key, $tax_pc)

 {

 $val += (($tax_pc/100) * $val);

 }

$prices = array(10, 17.25, 14.30);

array_walk($prices, "add_tax", 10);

foreach ($prices as $val)

 print "$val
";

// Output:

// 11

// 18.975

// 15.73

We pass the $prices array variable to array_walk() along with the name of the

add_tax() function. add_tax() needs to know the current sales tax rate. The

optional third argument to array_walk() will be passed to the nominated function,

so this is where we set the tax rate.

Custom Sorting Arrays
You have already seen how to sort arrays by key or value. You do not always want

to sort an array in such a straightforward way, however. You may want to sort it

 308

according to the values of an element buried in a multidimensional array, for

example, or to use a criterion completely different to the standard alphanumeric

comparison.

PHP enables you to define your own comparison functions to sort arrays. To do this

for a numerically indexed array, you would call the usort() function, which requires

the array you want to sort and the name of the function you want to make the

necessary comparisons.

The function you define should accept two arguments, which will hold the array

values to be compared. If they are equivalent according to your criterion, the

function should return 0; if the first argument should come before the second in the

subject array, the function should return − 1. If the first argument should come after

the second, the function should return 1.

Listing 16.1 uses usort() to sort a multidimensional array.

Listing 16.1: Using usort() to Sort a Multidimensional Array by One of Its

Fields

 1: <?php

 2: $products = array(

 3: array(name=>"HAL 2000", price=>4500.5),

 4: array(name=>"Tricorder", price=>55.5),

 5: array(name=>"ORAC AI", price=>2200.5),

 6: array(name=>"Sonic Screwdriver", price=>22.5)

 7:);

 8: function priceCmp($a, $b)

 9: {

10: if ($a[price] == $b[price])

11: return 0;

12: if ($a[price] < $b[price])

13: return − 1;

14: return 1;

15: }

16: usort($products, priceCmp);

17: foreach ($products as $val)

18: print "$val[name]: $val[price]
\n";

19: ?>

We define an array called $products, which we want to sort by the price field of each

 309

of its values.

We then create the custom sort function, priceCmp(). This function accepts two

arguments, $a and $b. These arguments will hold two the arrays that make up the

second level of the $products array. We compare their price elements, returning 0

if the prices are the same, − 1 if the first is less than the second, and 1 otherwise.

Having defined both function and array, we call the usort() function, passing it the

$products array and the name of our comparison function. usort() calls our function

repeatedly, passing it elements from the $products array and switching the order of

the elements according to the return value it receives.

Finally, we loop through the array, to demonstrate our new ordering.

Use usort() for sorting numerically indexed arrays. If you want to apply a similar

custom sort to an associative array, use uasort(). uasort() will sort maintaining the

association between keys and values. Listing 16.2 sorts an associative array using

uasort().

Listing 16.2: Using uasort() to Sort a Multdimensional Associative Array by

One of Its Fields

 1: <?php

 2: $products = array(

 3: "HAL 2000" => array(color =>"red", price=>4500.5),

 4: "Tricorder" => array(color =>"blue", price=>55.5),

 5: "ORAC AI" => array(color =>"green", price=>2200.5),

 6: "Sonic Screwdriver" => array(color =>"red", price=>22.5)

 7:);

 8: function priceCmp($a, $b)

 9: {

10: if ($a[price] == $b[price])

11: return 0;

12: if ($a[price] < $b[price])

13: return − 1;

14: return 1;

15: }

16: uasort($products, priceCmp);

17: foreach ($products as $key => $val)

18: print "$key: $val[price]
\n";

19: ?>

 310

You can custom sort an associative array by its keys using the function uksort().

uksort() is exactly the same in principle as usort() and uasort(), except that uksort()

compares the keys of the array.

Listing 16.3 uses uksort() to sort an array by the number of characters in each key.

Looking ahead to the next hour, we use the function strlen() to ascertain the length

in characters of each key. strlen() requires a single string argument and returns an

integer representing the number of characters in the string.

Listing 16.3: Using uksort() to Sort an Associative Array by the Length of

Its Keys

 1: <?php

 2: $exes = array(

 3: xxxx => 4,

 4: xxx => 5,

 5: xx => 7,

 6: xxxxx => 2,

 7: x => 8

 8:);

 9: function priceCmp($a, $b)

10: {

11: if (strlen($a) == strlen($b))

12: return 0;

13: if (strlen($a) < strlen($b))

14: return − 1;

15: return 1;

16: }

17: uksort($exes, priceCmp);

18: foreach ($exes as $key => $val)

19: print "$key: $val
\n";

20:

21: // output:

22: // x: 8

23: // xx: 7

24: // xxx: 5

25: // xxxx: 4

26: // xxxxx: 2

27:

28: ?>

 311

Summary

In this hour, you got your hands dirty with some of the more advanced aspects of

working with arrays and data types. You learned what happens when you cast

complex data types to scalars and vice versa. You learned how PHP deals with

different data types in an expression, automatically casting one of them for you. You

learned about functions, such as is_array(), that test for specific data types, and

functions, such as intval(), that convert data to a specific type. You learned about

the traditional way of traversing an array in PHP using each() and list(). You learned

how to check that a value exists in an array with in_array() and how to remove an

element from an array with unset(). You learned how to transform an array with

array_walk(). Finally, you learned about the custom sort functions with usort(),

uasort(), and uksort().

Q&A

Q Have we now covered every array function that PHP4 provides?

A No, there are even more array functions than we have space to cover in this book!

You can see them all listed and described at

http://www.php.net/manual/ref.array.php.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

What single function could you use to convert any data type to any other data

type?

Could you achieve the same thing without a function?

What will the following code print?

print "four" * 200;

How would you determine whether a variable contains an array?

 312

Which function is designed to return the integer value of its argument?

How would you test whether a variable has been set?

How would you test whether a variable contains an empty value, such as 0 or an

empty string?

What function would you use to delete an array element?

What function could you use to custom sort a numerically indexed array?

Activities

Look back through some of the scripts you have created whilst working with this

book. Convert any that use the foreach statement so that they are compatible

with PHP3.

Create an array of mixed data types. Custom sort the array by data type.

 313

Hour 17: Working with Strings

Overview

The World Wide Web is very much a plain text environment. No matter how rich Web

content becomes, HTML lies behind it all. It is no accident, then, that PHP4 provides

many functions with which you can format, investigate, and manipulate strings.

In this hour, you will learn

How to format strings

How to determine the length of a string

How to find a substring within a string

How to break a string down into component parts

How to remove white space from the beginning or end of a string

How to replace substrings

How to change the case of a string

Formatting Strings

Until now, we have simply printed any strings that we want to display directly to the

browser. PHP provides two functions that allow you first to apply formatting,

whether to round doubles to a given number of decimal places, define alignment

within a field, or display data according to different number systems. In this section,

you will look at a few of the formatting options provided by printf() and sprintf().

Working with printf()

If you have any experience with C, you will be familiar with the printf() function. The

PHP version is similar but not identical. printf() requires a string argument, known

as a format control string. It also accepts additional arguments of different types.

The format control string contains instructions as to how to display these additional

arguments. The following fragment, for example, uses printf() to output an integer

as a decimal:

printf("This is my number: %d", 55);

// prints "This is my number: 55"

 314

Within the format control string (the first argument), we have included a special

code, known as a conversion specification.

 NEW

TERM

A conversion specification begins with a percent (%) symbol and

defines how to treat the corresponding argument to printf(). You

can include as many conversion specifications as you want within

the format control string, as long as you send an equivalent

number of arguments to printf().

The following fragment outputs two numbers using printf():

printf("First number: %d
\nSecond number: %d
\n", 55, 66);

// Output:

// First number: 55

// Second number: 66

The first conversion specification corresponds to the first of the additional

arguments to printf(), which is 55. The second conversion specification corresponds

to 66. The d following the percent symbol requires that the data be treated as a

decimal integer. This part of a conversion specification is a type specifier.

printf() and Type Specifiers

You have already come across one type specifier d, which displays data in decimal

format. Table 17.1 lists the other type specifiers that are available.

Table 17.1: Type Specifiers

Specifier Description

d Display

argument as

a decimal

number

b Display an

integer as a

binary

number

c Display an

integer as

 315

ASCII

equivalent

f Display an

integer as a

floating-poin

t number

(double)

o Display an

integer as

an octal

number

(base 8)

s Display

argument as

a string

x Display an

integer as a

lowercase

hexadecimal

number

(base 16)

X Display an

integer as

an

uppercase

hexadecimal

number

(base 16)

Listing 17.1 uses printf() to display a single number according to some of the type

specifiers listed in Table 17.1.

Notice that we do not only add conversion specifications to the format control string.

Any additional text we include will be printed.

Listing 17.1: Demonstrating Some Type Specifiers

 1: <html>

 316

 2: <head>

 3: <title>Demonstrating some type specifiers</title>

 4: </head>

 5: <body>

 6: <?php

 7: $number = 543;

 8: printf("Decimal: %d
", $number);

 9: printf("Binary: %b
", $number);

10: printf("Double: %f
", $number);

11: printf("Octal: %o
", $number);

12: printf("String: %s
", $number);

13: printf("Hex (lower): %x
", $number);

14: printf("Hex (upper): %X
", $number);

15: ?>

16: </body>

17: </html>

Figure 17.1 shows the output for Listing 17.1. As you can see, printf() is a quick way

of converting data from one number system to another and outputting the result.

Figure 17.1: Demonstrating conversion specifiers.

 317

When you specify a color in HTML, you combine three hexadecimal numbers

between 00 and FF, representing the values for red, green, and blue. You can use

printf() to convert three decimal numbers between 0 and 255 to their hexadecimal

equivalents:

$red = 204;

$green = 204;

$blue = 204;

printf("#%X%X%X", $red, $green, $blue);

// prints "#CCCCCC"

Although you can use the type specifier to convert from decimal to hexadecimal

numbers, you can't use it to determine how many characters the output for each

argument should occupy. Within an HTML color code, each hexadecimal number

should be padded to two characters, which would become a problem if we changed

our $red, $green, and $blue variables in the previous fragment to contain 1, for

example. We would end up with the output "#111". You can force the output of

leading zeroes by using a padding specifier.

Padding Output with the Padding Specifier

You can require that output be padded by leading characters. The padding specifier

should directly follow the percent sign that begins a conversion specification. To pad

output with leading zeroes, the padding specifier should consist of a zero followed

by the number of characters you want the output to take up. If the output occupies

fewer characters than this total, the difference will be filled with zeroes:

printf("%04d", 36);

// prints "0036"

To pad output with leading spaces, the padding specifier should consist of a space

character followed by the number of characters that the output should occupy:

printf("% 4d", 36)

// prints " 36"

 Note A browser will not display multiple spaces in an HTML document. You

can force the display of spaces and newlines by placing <PRE> tags

around your output.

<pre>

 318

<?php

print "The spaces will be visible";

?>

</pre>

If you wish to format an entire document as text, you can use the

header() function to change the Content-Type header.

header("Content-Type: Text/Plain");

Remember that your script must not have sent any output to the

browser for the header() function to work as desired.

You can specify any character other than a space or a zero in your padding specifier

with a single quotation mark followed by the character you want to use:

printf ("%'x4d", 36);

// prints "xx36"

We now have the tools we need to complete our HTML code example. Until now, we

could convert three numbers, but we could not pad them with leading zeroes:

$red = 1;

$green = 1;

$blue = 1;

printf("#%02X%02X%02X", $red, $green, $blue);

// prints "#010101"

Each variable is output as a hexadecimal number. If the output occupies fewer than

two spaces, leading zeroes will be added.

Specifying a Field Width

You can specify the number of spaces within which your output should sit. The field

width specifier is an integer that should be placed after the percent sign that begins

a conversion specification (assuming that no padding specifier is defined). The

following fragment outputs a list of four items, all of which sit within a field of 20

spaces. To make the spaces visible on the browser, we place all our output within a

PRE element.

 319

print "<pre>";

printf("%20s\n", "Books");

printf("%20s\n", "CDs");

printf("%20s\n", "Games");

printf("%20s\n", "Magazines");

print "</pre>";

Figure 17.2 shows the output of this fragment.

Figure 17.2: Aligning with field width specifiers.

By default, output is right-aligned within the field you specify. You can make it

left-aligned by prepending a minus (−) symbol to the field width specifier:

printf("%− 20s\n", "Left aligned");

Note that alignment applies to the decimal portion of any number that you output.

In other words, only the portion before the decimal point of a double will sit flush to

the end of the field width when right aligned.

Specifying Precision

If you want to output data in floating-point format, you can specify the precision to

which you want to round your data. This is particularly useful when dealing with

currency. The precision identifier should be placed directly before the type specifier.

It consists of a dot followed by the number of decimal places to which you want to

round. This specifier only has an effect on data that is output with the f type

specifier:

printf("%.2f", 5.333333);

 320

// prints "5.33"

 Note In the C language, it is possible to use a precision specifier with printf()

to specify padding for decimal output. The precision specifier will have

no effect on decimal output in PHP4. Use the padding specifier to add

leading zeroes to integers.

Conversion Specifications: A Recap

Table 17.2 lists the specifiers that can make up a conversion specification in the

order that they would be included. Note that it is difficult to use both a padding

specifier and a field width specifier. You should choose to use one or the other, but

not both.

Table 17.2: Components of Conversion Specification

Name Description Example

Padding specifier Determines

the number

of

characters

that output

should

occupy,

and the

characters

to add

otherwise

' 4'

Field width specifier Determines

the space

within

which

output

should be

formatted

'20'

Precision specifier Determines

the number

of decimal

places to

'.4'

 321

which a

double

should be

rounded

Type specifier Determines

the data

type that

should be

output

'd'

Listing 17.2 uses printf() to output a list of products and prices.

Listing 17.2: Using printf() to Format a List of Product Prices

 1: <html>

 2: <head>

 3: <title>Using printf() to format a list of product prices</title>

 4: </head>

 5: <body>

 6: <?php

 7: $products = Array("Green armchair"=>"222.4",

 8: "Candlestick"=>"4",

 9: "Coffee table"=>80.6

10:);

11: print "<pre>";

12: printf("%− 20s%23s\n", "Name", "Price");

13: printf("%'− 43s\n", "");

14: foreach ($products as $key=>$val)

15: printf("%− 20s%20.2f\n", $key, $val);

16: printf("</pre>");

17: ?>

18: </body>

19: </html>

 322

We first define an associative array containing product names and prices. We print

a PRE element, so that the browser will recognize our spaces and newlines. Our first

printf() call defines the following format control string:

"%− 20s%23s\n"

The first conversion specification ("%− 20s") uses a field width specifier of 20

characters, with the output left-justified. We use a string type specifier. The second

conversion specification ("%23s") sets up a right-aligned field width. This printf()

call will output our field headers.

Our second printf() function call draws a line of − characters across a field of 43

characters. We achieve this with a padding specifier, which adds padding to an

empty string.

The final printf() call is part of a foreach statement that loops through our product

array. We use two conversion specifications. The first ("%− 20s") prints the product

name as a string left-justified within a 20-character field. The second conversion

specification ("%20.2f") uses a field width specifier to ensure that output will be

right-aligned within a 20-character field, and a precision specifier to ensure that the

double we output is rounded to two decimal places.

Figure 17.3 shows the output of Listing 17.2.

Storing a Formatted String

printf() outputs data to the browser, which means that the results are not available

to your scripts. You can, however, use the functionsprintf(), which works in exactly

the same way as printf() except that it returns a string that you can then store in a

variable for later use. The following fragment uses sprintf() to round a double to two

decimal places, storing the result in $dosh:

$dosh = sprintf("%.2f", 2.334454);

print "You have $dosh dollars to spend";

 323

Figure 17.3: Products and prices formatted with printf().

A particular use of sprintf() is to write formatted data to a file. You can call sprintf()

and assign its return value to a variable that can then be printed to a file with

fputs().

Investigating Strings

You do not always know everything about the data that you are working with.

Strings can arrive from many sources, including user input, databases, files, and

Web pages. Before you begin to work with data from an external source, you often

will need to find out more about it. PHP4 provides many functions that enable you to

acquire information about strings.

A Note About Indexing Strings

We will frequently use the word index in relation to strings. You will have come

across the word more frequently in the context of arrays. In fact, strings and arrays

are not as different as you might imagine. You can think of a string as an array of

characters. So you can access individual characters of a string as if they were

elements of an array:

$test = "scallywag";

print $test[0]; // prints "s"

print $test[2]; // prints "a"

 324

It is important to remember, therefore, that when we talk about the position or

index of a character within a string, characters, like array elements, are indexed

from 0.

Finding the Length of a String with strlen()

You can use strlen() to determine the length of a string. strlen() requires a string

and returns an integer representing the number of characters in the variable you

have passed it. strlen() might typically be used to check the length of user input.

The following fragment tests a membership code to ensure that it is four digits long:

if (strlen($membership) == 4)

 print "Thank you!";

else

 print "Your membership number must have 4 digits<P>";

The user is thanked for his input only if the global variable $membership contains

four characters; otherwise, an error message is generated.

Finding a Substring Within a String with strstr()

You can use strstr() to test whether a string exists embedded within another string.

strstr() requires two arguments: a source string and the substring you want to find

within it. The function returns false if the substring is absent. Otherwise, it returns

the portion of the source string beginning with the substring. For the following

example, imagine that we want to treat membership codes that contain the string

AB differently from those that do not:

$membership = "pAB7";

if (strstr($membership, "AB"))

 print "Thank you. Don't forget that your membership expires soon!";

else

 print "Thank you!";

Because our test variable $membership does contain the string AB, strstr() returns

the string AB7. This resolves to true when tested, so we print a special message.

What happens if our user enters "pab7"? strstr() is case sensitive, so AB will not be

found. The if statement's test will fail, and the default message will be printed to the

 325

browser. If we want search for either AB or ab within the string, we must use

stristr(), which works in exactly the same way but is not case sensitive.

Finding the Position of a Substring with strpos()

strpos() tells you both whether a string exists within a larger string and where it is

to be found. strpos() requires two arguments: the source string and the substring

you are seeking. The function also accepts an optional third argument, an integer

representing the index from which you want to start searching. If the substring does

not exist, strpos() returns false; otherwise, it returns the index at which the

substring begins. The following fragment uses strpos() to ensure that a string

begins with the string mz:

$membership = "mz00xyz";

if (strpos($membership, "mz") === 0)

 print "hello mz";

Notice the trick we had to play to get expected results. strpos() finds mz in our

string, but it finds it at the first element of the string. This means that it will return

zero, which will resolve to false in our test. To work around this, we use PHP4's new

equivalence operator ===, which returns true if the left- and right-hand operands

are equivalent and of the same type.

Extracting Part of a String with substr()

substr() returns a portion of a string based on the start index and length of the

portion you are looking for. strstr() demands two arguments, a source string, and

the starting index. It returns all characters from the starting index to the end of the

string you are searching. substr() optionally accepts a third argument, which should

be an integer representing the length of the string you want returned. If this

argument is present, substr() returns only the number of characters specified from

the start index onwards.

$test = "scallywag";

print substr($test,6); // prints "wag"

print substr($test,6,2) // prints "wa"

 326

If you pass substr() a minus number as its second (starting index) argument, it will

count from the end rather than the beginning of the string. The following fragment

writes a specific message to people who have submitted an email address ending

in .uk.

$test = "matt@corrosive.co.uk";

if ($test = substr($test, − 3) == ".uk")

 print "Don't forget our special offers for British customers";

else

 print "Welcome to our shop!";

Tokenizing a String with strtok()

You can parse a string word by word using strtok(). strtok() initially requires two

arguments, the string to be tokenized and the delimiters by which to split the string.

The delimiter string can include as many characters as you want. strtok() will return

the first token found . After strtok() has been called for the first time, the source

string will be cached. For subsequent calls, you should only pass strtok() the

delimiter string. The function will return the next found token every time it is called,

returning false when the end of the string is reached. strtok() will usually be called

repeatedly within a loop. Listing 17.3 uses strtok() to tokenize a URL, splitting the

host and path from the query string, and further dividing the name/value pairs of

the query string. Figure 17.3 shows the output from Listing 17.3.

Listing 17.3: Dividing a String into Tokens with strtok()

 1: <html>

 2: <head>

 3: <title>Listing 17.3 Dividing a string into

 4: tokens with strtok()</title>

 5: </head>

 6: <body>

 7: <?php

 8: $test = "http://www.deja.com/qs.xp?

 9: OP=dnquery.xp&ST=MS&DBS=2&QRY=developer+php";

10: $delims = "?&";

 327

11: $word = strtok($test, $delims);

12: while (is_string($word))

13: {

14: if ($word)

15: print "$word
";

16: $word = strtok($delims);

17: }

18: ?>

19: </body>

20: </html>

strtok() is something of a blunt instrument, and a few tricks are required to work

with it. We first store the delimiters that we want to work with in a variable, $delims.

We call strtok(), passing it the URL we want to tokenize and the $delims string. We

store the first result in $word. Within the conditional expression of the while loop,

we test that $word is a string. If it isn't, we know that end of the string has been

reached and no further action is required.

We are testing the return type because a string containing two delimiters in a row

would cause strtok() to return an empty string when it reaches the first of these

delimiters. So a more conventional test such as

while ($word)

 {

 $word = strtok($delims);

 }

would fail if $word is an empty string, even if the end of the source string has not yet

been reached.

Having established that $word contains a string, we can go on to work with it. If

$word does not contain an empty string, we print it to the browser. We must then

call strtok() again to repopulate the $word variable for the next test. Notice that we

don't pass the source string to strtok() a second time. If we were to do this, the first

word of the source string would be returned once again, and we would find

ourselves in an infinite loop.

 328

Manipulating Strings

PHP4 provides many functions that will transform a string argument, subtly or

radically.

Cleaning Up a String with trim() and ltrim()

When you acquire text from the user or a file, you can't always be sure that you

haven't also picked up white space at the beginning and end of your data. trim()

shaves any white space characters, including newlines, tabs, and spaces, from both

the start and end of a string. It accepts the string to be modified, returning the

cleaned-up version.

$text = "\t\t\tlots of room to breath ";

$text = trim($text);

print $text;

// prints "lots of room to breath";

Of course this might be more work than you require. You might want to keep white

space at the beginning of a string but remove it from the end. You can use PHP's

chop() function exactly the same as you would trim(). Only white space at the end

of the string argument will be removed, however:

$text = "\t\t\tlots of room to breath ";

$text = chop($text);

print $test;

// prints " lots of room to breath";

PHP provides the Itrim() function to strip white space only from the beginning of a

string. Once again, this is called with the string you want to transform and returns

a new string, shorn of tabs, newlines, and spaces:

$text = "\t\t\tlots of room to breath ";

$text = ltrim($text);

print $test;

// prints "lots of room to breath ";

 329

Replacing a Portion of a String using substr_replace()

substr_replace() works similarly to substr() except that it allows you replace the

portion of a string that you extract. The function requires three arguments: the

string you are transforming, the text you want to add to it, and the starting index.

It also accepts an optional length argument. substr_replace() finds the portion of a

string specified by the starting index and length arguments, replacing this portion

with the string provided in the replace string argument and returning the entire

transformed string.

In the following code fragment, to renew a user's membership code, we must

change its second two characters:

<?

$membership = "mz99xyz";

$membership = substr_replace($membership, "00", 2, 2);

print "New membership number: $membership<p>";

// prints "New membership number: mz00xyz"

?>

Replacing Substrings Using str_replace

str_replace() replaces all instances of a string within another string. It requires

three arguments: a search string, the replacement string, and the string on which

this transformation is to be effected. The function returns the transformed string.

The following example uses str_replace() to change all references to 1999 to 2000

within a string:

$string = "Site contents copyright 1999. ";

$string .= "The 1999 Guide to All Things Good in Europe";

print str_replace("1999","2000",$string);

Converting Case

PHP provides several functions that allow you to convert the case of a string. When

you write user-submitted data to a file or database, you may want to convert it all

 330

to upper- or lowercase text first, to make it easy to compare later on. To get an

uppercase version of a string, use the function strtoupper(). This function requires

only the string that you want to convert and returns the converted string:

$membership = "mz00xyz";

$membership = strtoupper($membership);

print "$membership<P>"; // prints "MZ00XYZ"

To convert a string to lowercase characters, use the function strtolower(). Once

again, this requires the string you want to convert and returns a converted version:

$home_url = "WWW.CORROSIVE.CO.UK";

$home_url = strtolower($home_url);

if (! (strpos ($home_url, "http://") === 0))

 $home_url = "http://$home_url";

print $home_url; // prints "http://80-www.corrosive.co.uk.proxy.lib.uiowa.edu"

PHP also provides a case function that has a useful cosmetic purpose. ucwords()

makes the first letter of every word in a string uppercase. In the following fragment,

we make the first letter of every word in a user-submitted string uppercase:

$full_name = "violet elizabeth bott";

$full_name = ucwords($full_name);

print $full_name; // prints "Violet Elizabeth Bott"

Although this function makes the first letter of each word uppercase, it does not

touch any other letters. So if the user had had problems with her shift key in the

previous example and submitted VIolEt eLIZaBeTH bOTt, our approach would not

have done much to fix the string. We would have ended up with VIolEt ELIZaBeTH

BOTt, which isn't much of an improvement. We can deal with this by making the

submitted string lowercase with strtolower() before invoking ucwords():

$full_name = "VIolEt eLIZaBeTH bOTt";

$full_name = ucwords(strtolower($full_name));

print $full_name; // prints "Violet Elizabeth Bott"

 331

Breaking Strings into Arrays with explode()

The delightfully named explode() function is similar in some ways to strtok().

explode(), though, will break up a string into an array, which you can then store,

sort, or examine as you want. explode() requires two arguments: the delimiter

string that you want to use to break up the source string and the source string itself.

The delimiter string can include more than one character, all of which will form a

single delimiter (unlike multiple delimiter characters passed to strtok(), each of

which will be a delimiter in its own right).

The following fragment breaks up a date and stores the result in an array:

$start_date = "2000-01-12";

$date_array = explode("-", $start_date);

// $date[0] == "2000"

// $date[1] == "01"

// $date[2] == "12"

Summary

Strings are PHP's principal means of communication with the outside world and of

storing information for later use. In this hour, you have covered some of the

functions that enable you to take control of the strings in your scripts.

You learned how to format strings with printf() and sprint(). You should be able to

use these functions both to create strings that transform data and lay it out. You

learned about functions that investigate strings. You should be able to discover the

length of a string with strlen(), determine the presence of a substring with strpos(),

or extract a substring with substr(). You should be able to tokenize a string with

strtok().

Finally, you learned about functions that transform strings. You can now remove

white space from the beginning or end of a string with trim(), ltrim(), or chop(). You

can change case with strtoupper(), strtolower(), or ucwords(). You can replace all

instances of a string with str_replace().

 332

Believe it or not, you are not finished with strings yet. PHP supports regular

expressions that are an even more powerful means of working with strings than the

functions already examined. Regular expressions are the subject of the next hour.

Q&A
Q Are there any other string functions that might be useful to me?

A Yes. PHP4 has about 60 string functions! You can read about them all in the PHP4

online manual at http://www.php.net/manual/ref.strings.php.

Q In the example that demonstrated printf(), we showed the formatting by

wrapping our output in <PRE> tags. Is this the best way of showing

formatted plain text on a browser?

A <PRE> tags can be useful if you want to preserve plain text formatting in an HTML

context. If you want to output an entire text document to the browser, however, it

is neater to tell the browser to format the entire output as plain text. You can do this

with the header() function:

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

What conversion specifier would you use with printf() to format an integer as a

double? Write down the full syntax required to convert the integer 33.

How would you pad the conversion you effected in question 1 with zeroes so that

the part before the decimal point is four characters long?

How would you specify a precision of two decimal places for the floating-point

number we have been formatting in the previous questions?

What function would you use to determine the length of a string?

What function would you use to acquire the starting index of a substring within

a string?

What function would you use to extract a substring from a string?

How might you remove white space from the beginning of a string?

How would you convert a string to uppercase characters?

How would you break up a delimited string into an array of substrings?

 333

Activities

Create a feedback form that accepts a user's full name and an email address.

Use case conversion functions to capitalize the first letter of each name the user

submits and print the result back to the browser. Check that the user's email

address contains the @ symbol and print a warning otherwise.

Create an array of doubles and integers. Loop through the array converting each

element to a floating-point number with a precision of 2. Right-align the output

within a field of 20 characters.

 334

Hour 18: Working with Regular

Expressions

Overview

Regular expressions are a powerful way of examining and modifying text. They

enable you to search for patterns within a string, extracting matches flexibly and

precisely. Be warned that because they are more powerful, they are also slower

than the more basic string function examined in Hour 17, "Working with Strings."

You should use string functions, therefore, if you don't need the extra power

afforded by the use of a regular expression function.

PHP supports two flavors of regular expression. It has a set of functions that

emulate regular expressions as employed in Perl, and a set of function that support

the more limited POSIX regular expressions. You will examine both.

In this hour, you will learn

How to match patterns in strings using regular expressions

The basics of regular expression syntax

How to replace text in strings using regular expressions

How to work with powerful Perl compatible regular expressions to match and

replace patterns in text

POSIX Regular Expression Functions

POSIX regular expression functions make it possible for you to match and replace

complex patterns in strings. They are commonly known simply as regular

expression functions, but we refer to them as POSIX regular expression functions to

distinguish them from the similar but more powerful Per1 compatible regular

expressions, and because they follow the POSIX definition for extended regular

expressions.

A regular expression is a combination of symbols that match a pattern in text.

Learning how to use regular expressions, therefore, is much more than learning the

 335

arguments and return types of PHP's regular expression functions. We will begin

with the functions and use them to introduce regular expression syntax.

Using ereg() to Match Patterns in Strings

ereg() requires a string representing a pattern, a string representing the text to be

searched, and an array variable into which the results of the search will be placed.

ereg() returns an integer representing the number of characters matched if the

pattern was discovered in the source string, or false otherwise. Let's search the

string "Aardvark advocacy" for the letters "aa."

print ereg("aa","aardvark advocacy",$array);

print "
$array[0]
";

// output:

// 2

// aa

The letters "aa" exist in "aardvark," so ereg() returns 2, which is the number of

letters it matched. The first element of the $array variable is also filled with the

matched string, which we print to the browser. This might seem strange given that

we already know the pattern we are looking for is "aa". We are not, however, limited

to looking for predefined characters. We can use a single dot (.) to match any

character:

print ereg("aa","aardvark advocacy",$array);

print "
$array[0]
";

// output:

// 2

// dv

d. matches "d" followed by any character. We don't know in advance what the

second character will be, so the value in $array[0] becomes useful.

Using Quantifiers to Match a Character More Than Once

When you search for a character in a string, you can use a quantifier to determine

the number of times this character should repeat for a match to be made. The

 336

pattern a+, for example, will match at least one "a" followed by "a" zero or more

times. Let's put this to the test:

if (ereg("a+","aaaa", $array))

 print $array[0];

// prints "aaaa";

Notice that this regular expression greedily matches as many characters as it can.

Table 18.1 lists the quantifiers you can use to test for a recurring character.

Table 18.1: Quantifiers for Matching a Recurring Character

Symbol Description Example Matches

Does

Not

Match

* Zero or more

instance

a* xxxx (Will

match

anything

)

+ One or more

instances

a+ xaax xxxx

? Zero or one

instance

a? xaxx xaax

{n} n instances a{3} xaaa aaaa

{n,} At least n

instances

a{3,} aaaa aaxx

{,n} Up to n

instances

a{,2} xaax aaax

{n1,n2} At least n1

instances, no

more than

n2 instances

a{1,2} xaax xaaa

The numbers between braces in Table 18.1 are called bounds. Bounds let you

pinpoint exactly the number of times a character should repeat to be matched.

 NEW

TERM

Bounds define the number of times a character or range of

characters should be matched in a regular expression. You should

place your upper and lower bounds between braces after the

 337

character you wish to match. For example,

a{4,5}

will match no fewer than 4 and no more than 5 instances of the

character a.

Let's create an example. A club has allocated membership codes to its members. A

valid code can be between one and four instances of the letter "y" followed by any

number of alphanumeric characters, followed by the number 99. We have been

requested by the club to parse a backlog, pulling out the membership codes where

possible.

$test = "the code is yyXGDH99 -- have you received my sub?";

if (ereg("y{1,4}.*99 ", $test, $array))

 print "Found membership: $array[0]";

// prints "Found membership: yyXGDH99 "

In the previous code fragment, the membership code begins with two y characters,

followed by four uppercase letters, followed by 99. y{1,4} matches the two y

characters, and the four uppercase letters are matched by .*, which will match any

number of characters of any type.

So that would seem to do the job. In fact, we have a long way to go yet. To ensure

that the matched pattern ends at 99, we have required a space as the last character.

This is returned when we match. Worse than this, if the string we were testing was

"my code is yyXGDH99 did you get my 1999 sub?"

the previous regular expression would match

"y code is yyXGDH99 did you get my 1999"

So what went wrong? The regular expression matched the y in my, and then

matched any number of characters until it reached 99 followed by a space. Regular

expressions are greedy; in other words, they match as many characters as they can.

For this reason, we match all characters until the 99 of 1999 is reached, rather than

the final 99 in our membership code. We might go some way towards fixing this if

only we could make sure that the characters that we match between y and 99 are

truly alphanumeric and contain no spaces. In fact, we can do this easily with a

character class.

 338

Matching Ranges of Characters with Character Classes

Until now we have either matched specified characters or used . to match any

character. Character classes enable you to match any one of a group of characters.

To define a character class, you surround the characters you want to match in

square brackets. [ab] will match "a" or "b." After you have defined a character class,

you can treat it as if it were a character. So [ab]+ will match "aaa," "bbb," or

"ababab."

You can also match ranges of characters with a character class: [a– z] will match any

lowercase letter, [A–Z] will match any uppercase letter, and [0–9] will match any

number. You can combine ranges and individual characters into one character class,

so [a– z5] will match any lowercase letter or the number "5".

You can also negate a character class by including a caret (^) character after the

opening square bracket: [^A–Z] will match anything apart from an uppercase

character.

Let's return to the example from the previous section. We need to match "y"

between one and four times, any alphanumeric character any number of times, and

the characters "99."

$test = "my code is yyXGDH99 did you get my 1999 sub?";

if (ereg("y{1,4}[a-zA-Z0-9]*99 ", $test, $array))

 print "Found membership: $array[0]";

// prints "Found membership: yyXGDH99 "

We're getting closer. The character class that we have added will no longer match

spaces, so the membership code is now returned. If we add a comma after the

membership code in our test string, however, the regular expression fails again:

$test = "my code is yyXGDH99, did you get my 1999 sub?";

if (ereg("y{1,4}[a-zA-Z0-9]*99 ", $test, $array))

 print "Found membership: $array[0]";

// regular expression fails

This is because we have demanded a space at the end of the pattern to ensure that

we are at the end of the membership code. So if a text includes a membership code

in brackets, or before a hyphen or comma, the match will fail. We can amend our

 339

regular expression, so that we match anything other than an alphanumeric

character, which will get us some way towards a solution:

$test = "my code is yyXGDH99, did you get my 1999 sub?";

if (ereg("y{1,4}[a-zA-Z0-9]*99[^a-zA-Z0-9]", $test, $array))

 print "Found membership: $array[0]";

// prints "Found membership: yyXGDH99,"

We're closer still, but there are still two problems. First, we have included the

comma in our returned match, and second, the match will fail if the membership

code is at the end of the string we are testing because it requires a character to exist

after the membership code. We need, in other words, to find a reliable way of

testing for a word boundary. We will return to this problem.

Working with Atoms

 NEW

TERM

An atom is a pattern enclosed in brackets (often referred to as a

subpattern). After you have defined an atom, you can treat it as if

it were itself a character or character class. In other words, you

can match the same pattern as many times as you want using the

syntax described in Table 18.1.

In the next fragment, we define a pattern, enclose it in brackets, and require that

the atom should match twice for the regular expression to succeed:

$test = "abbaxabbaxabbax";

if (ereg("([ab]+x){2}", $test, $array))

 print "$array[0]";

// prints "abbaxabbax"

[ab]+x will match "abbax", but ([ab]+x)2 will match "abbaxabbax".

The first element of the array variable that is passed to ereg() will contain the

complete matched string. Subsequent elements will contain each individual atom

matched. This means that you can access the component parts of a matched

pattern as well as the entire match.

In the following code fragment, we match an IP address and access not only the

entire address, but also each of its component parts:

$test = "158.152.55.35";

 340

if (ereg("([0–9]+)\.([0–9]+)\.([0–9]+)\.([0–9]+)", $test, $array))

 {

 foreach ($array as $val)

 print "$val
";

 }

// Output:

// 158.152.1.58

// 158

// 152

// 1

// 58

Notice that we have used a backslash (\) to escape the dots in the regular

expression. By doing this, we signal that we want to strip . of its special meaning

and treat it as a specific character. You must do the same for any character that has

a function in a regular expression if you want to refer to it.

Branches

You can combine patterns with the pipe (|) character to create branches in your

regular expressions. A regular expression with two branches will match either the

first pattern or the second. This adds yet another layer of flexibility to regular

expression syntax. In the next code fragment, we match either .com or .co.uk in a

string:

$test = "www.adomain.com";

if (ereg("\.com|\.co\.uk", $test, $array))

 print "it is a $array[0] domain
";

// prints "it is .com domain"

Anchoring a Regular Expression

Not only can you determine the pattern you want to find in a string, you also can

decide where in the string you want to find it. To test whether a pattern is at the

 341

beginning of a string, prepend a caret (^) symbol to your regular expression. ^a will

match "apple", but not "banana".

To test that a pattern is at the end of a string, append a dollar ($) symbol to the end

of your regular expression. a$ will match "flea" but not "dear".

The Membership Code Example Revisited

We now have the tools to complete our membership code examples. Remember

that we are parsing emails to extract membership codes that consist of between one

and four instances of the letter "y" followed by any number of any alphanumeric

characters followed by "99". Our current problem is to determine when a matched

pattern is on a word boundary. We can't use a space because a word can be

bounded by punctuation. We can't require that a nonalphanumeric character bound

the match because our pattern could begin or end a string.

Now that we can create branches and anchor patterns, we can require that the

membership code be followed either by a nonalphanumeric character or the end of

the string. We can use the same logic to determine a word boundary at the

beginning of the code. We can also use brackets to recover the membership code

shorn of any punctuation or spaces as follows:

$test = "my code is yyXGDH99, did you get my 1999 sub?";

if (ereg("(^|[^a-zA-Z0-9])(y{1,4}[a-zA-Z0-9]*99)([^a-zA-Z0-9]$verbar;$)",

$test,

$array))

 print "Found membership: $array[2]";

// prints "Found membership: yyXGDH99"

As you can see, regular expressions are daunting at first glance. After you break

them down into smaller chunks, however, they usually reveal their secrets quite

easily. We have ensured that our matched pattern is on a word boundary (as we

define it for these purposes). This means that it must either be preceded by a

nonalphanumeric character or the beginning of the string. It must be also be

followed by a nonalphanumeric character or the end of the string. We don't want to

record any preceding or following characters, so we wrap the pattern we want to

extract in brackets. We can then be sure to access it in the second element of the

$array array.

 Note ereg() is case sensitive. If you don't want to match case, you can use

 342

eregi(), which is not case sensitive but is the same as ereg() in all

other respects.

Using egrep_replace() to Replace Patterns in Strings

Until now we have searched for patterns in a string, leaving the search string

untouched. egrep_replace() enables you to find a pattern in a string and replace it

with a new substring. egrep_replace() requires three strings: a regular expression,

the text with which to replace a found pattern, and the text to modify.

egrep_replace() returns a string, including the modification if a match was found or

an unchanged copy of the original source string, otherwise. In the following

fragment, we search for the name of a club official, replacing it with name of her

successor:

$test = "Our Secretary, Sarah Williams is pleased to welcome you.";

print ereg_replace("Sarah Williams", "Rev. P.W. Goodchild", $test);

// prints "Our Secretary, Rev. P.W. Goodchild is pleased to welcome you."

Note that although ereg() will only match the first pattern it finds, ereg_replace()

will find and replace every instance of a pattern.

Using Back References with egrep_replace()

Back references make it possible for you to use part of a matched pattern in the

replacement string. To use this feature, you should use brackets to wrap any

elements of your regular expression that you might want to use. The text matched

by these subpatterns will be available to the replacement string if you refer to them

with two backslashes and the number of the atom (\\1, for example). Atoms are

numbered in order, outer to inner, left to right starting at \\1. \\0 stores the entire

match.

The following fragment converts dates in dd/mm/yy format to mm/dd/yy format:

$test = "25/12/2000";

print ereg_replace("([0–9]+)/([0–9]+)/([0–9]+)", "\\2/\\1/\\3", $test);

// prints "12/25/2000"

 Note ereg_replace() is case sensitive. If you don't want to match case, you

can use eregi_replace(), which is not case sensitive but is identical to

 343

ereg_replace() in all other respects.

Using split() to Break Up Strings

In Hour 17, you saw that you could split a string of tokens into an array using

explode(). This is powerful but limits you to a single set of characters that can be

used as a delimiter. PHP4's split() function enables you to use the power of regular

expressions to define a flexible delimiter. split() requires a string representing a

pattern to use as a delimiter and a source string. It also accepts an optional third

argument representing a limit to the number of elements you want returned. split()

returns an array.

The following fragment uses a regular expression with two branches to split a string

on either a comma followed by a space or the word and surrounded by two spaces:

$text = "apples, oranges, peaches and grapefruit";

$fruitarray = split(", | and ", $text);

foreach ($fruitarray as $item)

 print "$item
";

// output:

// apples

// oranges

// peaches

// grapefruit

Perl Compatible Regular Expressions (PCREs)

If you are migrating from Perl to PHP, you are likely to find the POSIX regular

expression functions somewhat cumbersome. The good news is that PHP4 supports

Perl compatible regular expressions. PCREs are even more powerful than the syntax

that you have already examined. We will explore the differences in this section.

Matching Patterns with preg_match()

preg_match() accepts three arguments: a regular expression, a source string, and

an array variable, which will store matches. preg_match() returns true if a match is

 344

found and false otherwise. The difference between this function and ereg_match()

lies in the regular expression argument. Perl compatible regular expressions should

be enclosed by delimiters. Conventionally, these delimiters are forward slashes,

although you can use any character that isn't alphanumeric (apart from the

backslash character). The following fragment uses preg_match() to match the

character p followed by any character, followed by the character t:

$text = "pepperpot";

if (preg_match("/p.t/", $text, $array))

 print $array[0];

// prints "pot"

PCREs and Greediness

By default, regular expressions will attempt to match as many characters as

possible. So,

"/p.*t/"

will find the first "p" in a string and match as many characters as possible until the

last possible "t" character is reached. So, this regular expression matches the entire

test string in the following fragment:

$text = "pot post pat patent";

if (preg_match("/p.*t/", $text, $array))

 print $array[0];

// prints "pot post pat patent"

By placing a question mark (?) after any quantifier, you can force a Perl compatible

regular expression to be more frugal. So, whereas

"p.*t"

means "p followed by as many characters as possible followed by t,"

"p.*?t"

means "p followed by as few characters as possible followed by t,"

The following fragment uses this technique to match the smallest number of

characters starting with "p" and ending with "t":

$text = "pot post pat patent";

 345

if (preg_match("/p.*?t/", $text, $array))

 print $array[0];

// prints "pot"

PCREs and Backslashed Characters

You can escape certain characters with Perl compatible regular expressions, just as

you can within strings. \t, for example represents a tab character, and \n represents

a newline. PCREs also define some escape characters that will match entire

character types. Table 18.2 lists these backslash characters.

Table 18.2: Escape Characters That Match Character Types

Character Matches

\d Any

number

\D Anything

other than

a number

\s Any kind

of

whitespac

e

\S Anything

other than

whitespac

e

\w Any word

character

(including

the

underscor

e

character)

\w Anything

other than

 346

a word

character

These escape characters can vastly simplify your regular expressions. Without them,

you would be forced to use a character class to match ranges of characters.

Compare the ereg() and preg_match() syntax for matching word characters:

ereg("p[a– zA–Z0–9_]+t", $text, $array);

preg_match("/p\w+t/, $text, $array);

PCREs also support a number of escape characters that act as anchors. Anchors

match positions within a string, without matching any characters. These are listed in

Table 18.3.

Table 18.3: Escape Characters That Act as Anchors

Character Matches

\A Beginning

of string

\b Word

boundary

\B Not a

word

boundary

\Z End of

string

(matches

before

final

newline

or at end

of string)

\z End of

string

(matches

only at

very end

of string)

 347

Remember the problems we had matching word boundaries in our membership

code example? PCREs make this job much easier. Compare the ereg() and

preg_match() syntax for matching word characters and boundaries:

ereg("(^|[^a-zA-Z0-9_])(p[a-zA-Z0-9_]+t)([^a-zA-Z0-9_]|$)", $text, $array);

preg_match("\bp\w+t\b", $text, $array);

The preg_match() call in the previous fragment will match the character "p" but only

if it is at a word boundary, followed by any number of word characters, followed by

"t," but only if it is at a word boundary. The word boundary escape character does

not actually match a character; it merely confirms that a boundary exists for a

match to take place. For the ereg_match() call, you must construct a pattern for a

nonword character and match either that or a string boundary.

You can also escape characters to turn off their meanings. To match a "." character,

for example, you should add a backslash to it.

Finding Matches Globally with preg_match_all()

One of the problems with POSIX regular expressions is that it is difficult to match

every instance of a pattern within a string. So, using ereg() to search for words

beginning with "p" and ending with "s", we will match only the first found pattern.

Let's try it out:

$text = "I sell pots, plants, pistachios, pianos and parrots";

if (ereg("(^|[^a-zA-Z0-9_])(p[a-zA-Z0-9_]+s)([^a-zA-Z0-9_]|$)",

 $text, $array))

 {

 for ($x=0; is_string($array[$x]); $x++)

 print "\$array[$x]: $array[$x]
\n";

 }

// output:

// $array[0]: pots,

// $array[1]:

// $array[2]: pots

// $array[3]: ,

 348

As we would expect, the first match, "pots", is stored in the third element of the

$array array. The first element contains the complete match, the second contains a

space, and the fourth contains a comma. To get at every pattern match in our test

string, we would have to use ereg_replace() in a loop to remove each match from

the string before testing again.

We can use preg_match_all() to access every match in the test string in one call.

preg_match_all() accepts a regular expression, a source string, and an array

variable, and will return true if a match is found. The array variable is populated with

a multidimensional array, the first element of which will contain every match to the

complete pattern defined in the regular expression.

Listing 18.1 tests a string using preg_match_all(), using two for statements to

output the multidimensional array of results.

Listing 18.1: Using preg_match_all() to Match a Pattern Globally

 1: <html>

 2: <head>

 3: <title>Using preg_match_all() to match a pattern globally</title>

 4: </head>

 5: <body>

 6: <?php

 7: $text = "I sell pots, plants, pistachios, pianos and parrots";

 8: if (preg_match_all("/\bp\w+s\b/", $text, $array))

 9: {

10: for ($x=0; $x< count($array); $x++)

11: {

12: for ($y=0; $y< count($array[$x]); $y++)

13: print "\$array[$x][$y]: ".$array[$x][$y]."
\n";

14: }

15: }

16: // Output:

17: // $array[0][0]: pots

18: // $array[0][1]: plants

 349

19: // $array[0][2]: pistachios

20: // $array[0][3]: pianos

21: // $array[0][4]: parrots

22: ?>

23: </body>

24: </html>

The first and only element of the $array variable that we passed to preg_match_all()

has been populated with an array of strings. This array contains every word in the

test string that begins with "p" and ends with "s".

preg_match_all() populates a multidimensional array to store matches to

subpatterns. The first element of the array argument passed to preg_match_all()

will contain every match of the complete regular expression. Each additional

element will contain the matches that correspond to each atom (subpattern in

brackets). So with the following call to preg_match_all()

$text = "01-05-99, 01-10-99, 01-03-00";

preg_match_all("/(\d+)-(\d+)-(\d+)/", $text, $array);

$array[0] will store an array of complete matches:

$array[0][0]: 01-05-99

$array[0][1]: 01-10-99

$array[0][2]: 01-03-00

$array[1] will store an array of matches that corresponds to the first subpattern:

$array[1][0]: 01

$array[1][1]: 01

$array[1][2]: 01

$array[2] will store an array of matches that corresponds to the second subpattern:

$array[2][0]: 05

$array[2][1]: 10

$array[2][2]: 03

and so on.

 350

Using preg_replace() to Replace Patterns

preg_replace() behaves in the same way as ereg_replace(), except that you have

access to the additional functionality of Perl compatible regular expressions.

preg_replace() requires a regular expression, a replacement string, and a source

string. If a match is found, it returns a transformed string; otherwise, it returns a

copy of the source string. The following fragment transforms dates in a string from

dd/mm/yy to mm/dd/yy format:

$t = "25/12/99, 14/5/00";

$t = preg_replace("|\b(\d+)/(\d+)/(\d+)\b|", "\\2/\\1/\\3", $t);

print "$t
";

// prints "12/25/99, 5/14/00"

Notice that we have used a pipe (|) symbol as a delimiter. This is to save us from

having to escape the forward slashes in the pattern we want to match.

preg_replace() supports back references in the same way as ereg_replace().

Instead of a source string, you can pass an array of strings to preg_match(), and it

will transform each string in turn. In this case, the return value will be an array of

transformed strings.

You can also pass arrays of regular expressions and replacement strings to

preg_match(). Each regular expression will be applied to the source string, and the

corresponding replacement string will be applied. The following fragment

transforms date formats as before, but also changes copyright information in the

source string:

$text = "25/12/99, 14/5/00. Copyright 1999";

$regs = array("|\b(\d+)/(\d+)/(\d+)\b|", "/([Cc]opyright) 1999/");

$reps = array("\\2/\\1/\\3", "\\1 2000");

$text = preg_replace($regs, $reps, $text);

print "$text
";

// prints "12/25/99, 5/14/00. Copyright 2000"

We create two arrays. The first, $regs, contains two regular expressions, and the

second, $reps, contains replacement strings. The first element of the $reps array

corresponds to the first element of the $reps array, and so on.

 351

If the array of replacement strings contains fewer elements than the array of regular

expressions, patterns matched by those regular expressions without corresponding

replacement strings will be replaced with an empty string.

If you pass preg_replace() an array of regular expressions but only a string as

replacement, the same replacement string will be applied to each pattern in the

array of regular expressions.

Modifiers

Perl compatible regular expressions allow you to modify the way that a pattern is

applied through the use of pattern modifiers.

 NEW

TERM

A pattern modifier is a letter that should be placed after the final

delimiter in your Perl compatible regular expression. It will refine

the behavior of your regular expression.

Table 18.4 lists the PCRE pattern modifiers

Table 18.4: Perl Compatible Regular Expression Modifiers

Pattern Description

/i Case insensitive.

/e Treats replacement

string in

preg_replace() as

PHP code.

/m $ and ^ anchors

match the

beginning and end

of the current line.

/s Matches newlines

(newlines are not

normally not

matched by.).

/x Whitespace outside

character classes is

not matched to aid

readability. To

 352

match whitespace,

use \s, \t, or \.

/A Matches pattern

only at start of

string (this modifier

is not found in Perl).

/E Matches pattern

only at end of string

(this modifier is not

found in Perl).

/U Makes the regular

expression

ungreedy— minimu

m number of

allowable matches

found (this modifier

is not found in Perl).

Where they do not contradict one another, you can combine pattern modifiers. You

might want to use the x modifier to make your regular expression easier to read, for

example, and also the i modifier to make it match patterns regardless of case. / b

\S* t /ix will match "bat" and "BAT" but not "B A T", for example. Unescaped spaces

in a regular expression modified by x are there for aesthetic reasons only and will

not match any patterns in the source string.

The m modifier can be useful if you want to match an anchored pattern on multiple

lines of text. The anchor patterns ̂ and $ match the beginning and ends of an entire

string by default. The following fragment uses the m modifier to change the

behavior of $:

$text = "name: matt\noccupation: coder\neyes: blue\n";

preg_match_all("/^\w+:\s+(.*)$/m", $text, $array);

foreach ($array[1] as $val)

 print "$val
";

// output:

// matt

// coder

 353

// blue

We create a regular expression that will match any word characters followed by a

colon and any number of space characters. We then match any number of

characters followed by the end of string ($) anchor. Because we have used the m

pattern modifier, $ matches the end of every line rather than the end of the string.

The s modifier is useful when you want use . to match characters across multiple

lines. The following fragment attempts to access the first and last words of a string:

$text = "start with this line\nand you will reach\na conclusion in the end\n";

preg_match("/^(\w+).*?(\w+)$/", $text, $array);

print "$array[1] $array[2]
";

This code will print nothing. Although the regular expression will find word

characters at the beginning of the string, the . will not match the newline characters

embedded in the text. The s modifier will change this:

$text = "start with this line\nand you will reach\na conclusion in the end\n";

preg_match("/^(\w+).*?(\w+)$/s", $text, $array);

print "$array[1] $array[2]
";

// prints "start end"

The e modifier can be particularly powerful. It allows you to treat the replacement

string in preg_replace() as if it were PHP. You can pass back references to functions

as arguments, for example, or process lists of numbers. In the following example we

use the e modifier to pass matched numbers in dates to a function that returns the

same date in a new format.

<?php

function convDate($month, $day, $year)

 {

 $year = ($year < 70)?$year+2000:$year;

 $time = (mktime(0,0,0,$month,$day,$year));

 return date("1 F Y", $time);

 }

$dates = "3/18/99
\n7/22/00";

$dates = preg_replace("/([0–9]+)\/([0–9]+)\/([0–9]+)/e",

 354

 "convDate(\\1,\\2,\\3)", $dates);

print $dates;

// prints:

// Thursday 18 March 1999

// Saturday 22 July 2000

?>

We match any set of three numbers separated by slashes, using parentheses to

capture the matched numbers. Because we are using the e modifier, we can call the

user-defined function convDate() from the replacement string argument, passing

the three back references to the function. convDate() simply takes the numerical

input and produces a more verbose date which replaces the original.

Summary

Regular expressions are a huge subject, and we've really only scraped the surface of

their power in this hour. Nevertheless, you should now be able to use regular

expression functions to find and replace complex patterns in text.

You should be able to use the ereg() regular expression function to find patterns in

strings and the ereg_replace() function to replace all instances of a pattern in a

string. You should be able to find ranges of characters using character classes,

multiple patterns using quantifiers, and alternative patterns using branches. You

should be able to extract subpatterns and refer to them with back references. With

the aid of Perl compatible regular expressions, you should be able to use escape

characters to anchor patterns or to match character types. You should be able to use

modifiers to change the way in which PCREs work.

Q&A

Q Perl compatible regular expressions seem very powerful. Is there

anywhere I can find out more about them?

A The relevant section in the PHP manual at http://www.php.net will offer some

information about regular expression syntax. You can also find some useful

information at http://www.perl.com— in particular, an introduction to Perl regular

expressions at http://www.perl.com/pub/doc/manual/html/pod/perlre.html and an

 355

article by Tom Christiansen at

http://www.perl.com/pub/doc/manual/html/pod/perlfaq6.html.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

Using POSIX regular expression functions, what function would you use to match

a pattern in a string?

What regular expression syntax would you use to match the letter "b" at least

once but not more than six times?

How would you specify a character range between "d" and "f"?

How would you negate the character range you defined in question 3?

What syntax would you use to match either any number or the word "tree"?

What POSIX regular expression function would you use to replace a matched

pattern?

The regular expression

.*bc

will match greedily— that is, it will match "abc000000bc" rather than "abc". Using

Perl compatible regular expressions, how would you make the preceding regular

expression match only the first instance of a pattern it finds?

Using PCREs, what backslash character will match whitespace?

What PCRE function could you use to match every instance of a pattern in a

string?

Which modifier would you use in a PCRE function to match a pattern

independently of case?

Activity

Use regular expressions to extract email addresses from a file. Add them to an

array and output the result to the browser. Refine your regular expression across

a number of files.

 356

Hour 19: Saving State with Cookies and

Query Strings

Overview

HTTP is a stateless protocol. This means that every page a user downloads from

your server represents a separate connection. On the other hand, Web sites are

perceived by users and publishers alike as environments, as spaces within which a

single page is part of a wider whole. It's not surprising, therefore, that strategies to

pass information from page to page are as old as the Web itself.

In this hour, we will examine two methods of storing information on one page that

can then be accessed on subsequent pages. In this hour, you will learn

What cookies are and how they work

How to read a cookie

How to set a cookie

How to use cookies to store site usage information in a database

About query strings

How to build a function to turn an associative array into a query string

Cookies

Netscape originated the "magic cookie" back in the days of Netscape 1. The origin of

the name is the subject of some debate, though it seems reasonable to assume that

the fortune cookie may have played a role in the thinking behind it. Since then, the

standard has been embraced by other browser producers.

 NEW

TERM

A cookie is a small amount of data stored by the user's browser

in compliance with a request from a server or script. A host can

request that up to 20 cookies be stored by a user's browser. Each

cookie consists of a name, value, and expiry date, as well as host

and path information. An individual cookie is limited to 4KB.

After a cookie is set, only the originating host can read the data, ensuring that the

user's privacy is respected. Furthermore, the user can configure his browser to

 357

notify him of all cookies set, or even to refuse all cookie requests. For this reason,

cookies should be used in moderation and should not be relied on as an essential

element of an environment design without first warning the user.

Having said that, cookies can be an excellent way of saving small amounts of

information about a user from page to page or even from visit to visit.

The Anatomy of a Cookie

Cookies are usually set in an HTTP header (although JavaScript can also set a cookie

directly on a browser). A PHP script that sets a cookie might send headers that look

something like this:

HTTP/1.1 200 OK

Date: Fri, 04 Feb 2000 21:03:38 GMT

Server: Apache/1.3.9 (UNIX) PHP/4.0b3

Set-Cookie: vegetable=artichoke; expires=Friday,

04-Feb-00 22:03:38 GMT; path=/; domain=zink.demon.co.uk

Connection: close

Content-Type: text/html

As you can see, the Set-Cookie header contains a name value pair, a GMT date, a

path and a domain. The name and value will be URL encoded. The expires field is an

instruction to the browser to "forget" the cookie after the given time and date. The

path field defines the position on a Web site below which the cookie should be sent

back to the server. The domain field determines the Internet domains to which the

cookie should be sent.

The domain cannot be different from the domain from which the cookie was sent,

but can nonetheless specify a degree of flexibility. In the preceding example, the

browser will send the cookie to the server zink.demon.co.uk and the server

www.zink.demon.co.uk. You can read more about HTTP headers in Hour 13,

"Beyond the Box."

If the browser is configured to store cookies, it will then keep this information until

the expiry date. If the user points the browser at any page that matches the path

and domain of the cookie, it will resend the cookie to the server. The browser's

headers might look something like this:

 358

GET / HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.6 (X11; I; Linux 2.2.6-15apmac ppc)

Host: zink.demon.co.uk:1126

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pipeg, image/png, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: vegetable=artichoke

A PHP script will then have access to the cookie in the environmental variable

HTTP-COOKIE (which holds all cookie names and values), in the global variable

$vegetable, or in the global array variable HTTP_COOKIE_VARS["vegetable"]:

print "$HTTP_COOKIE
"; // prints "vegetable=artichoke"

print getenv("HTTP_COOKIE")."
"; // prints "vegetable=artichoke"

print "$vegetable
"; // prints "artichoke"

print "$HTTP_COOKIE_VARS[vegetable]
"; // prints "artichoke"

Setting a Cookie with PHP

You can set a cookie in a PHP script in two ways. You can use the header() function

to set the Set-Cookie header. You encountered the header() function in Hour 9,

"Working with Forms." header() requires a string that will then be included in the

header section of the server response. Because headers are sent automatically for

you, header() must be called before any output at all is sent to the browser.

header ("vegetable=artichoke; expires=Friday, 04-Feb-00 22:03:38 GMT; path=/;

domain=zink.demon.co.uk");

Although not difficult, this method of setting a cookie would require you to build a

function to construct the header string. Formatting the date as in this example and

URL encoding the name/value pair would not be a particularly arduous task. It

would, however, be an exercise in wheel reinvention because PHP provides a

function that does just that.

 359

setcookie() does what the name suggests— it outputs a Set-Cookie header. For this

reason, it should be called before any other content is sent to the browser. The

function accepts the cookie name, cookie value, expiry date in UNIX epoch format,

path, domain, and integer that should be set to 1 if the cookie is only to be sent over

a secure connection. All arguments to this function are optional apart from the first

(cookie name) parameter.

Listing 19.1 uses setcookie() to set a cookie.

Listing 19.1: Setting and Printing a Cookie Value

 1: <?php

 2: setcookie("vegetable", "artichoke", time()+3600, "/",

 3: "zink.demon.co.uk", 0);

 4: ?>

 5: <html>

 6: <head>

 7: <title>Listing 19.1 Setting and printing a cookie value</title>

 8: </head>

 9: <body>

10: <?php

11: if (isset($vegetable))

12: print "<p>Hello again, your chosen vegetable is $vegetable</p>";

13: else

14: print "<p>Hello you. This may be your first visit</p>";

15: ?>

16: </body>

17: </html>

Even though we set the cookie when the script is run for the first time, the

$vegetable variable will not be created at this point. A cookie is only read when the

browser sends it to the server. This will not happen until the user revisits a page in

your domain. We set the cookie name to "vegetable" and the cookie value to

"artichoke". We use the time() function to get the current time stamp and add 3600

 360

to it (there are 3600 seconds in an hour). This total represents our expiry date. We

define a path of "/", which means that a cookie should be sent for any page within

our server environment. We set the domain argument to "zink.demon.co.uk", which

means that a cookie will be sent to any server in that group (www.zink.demon.co.uk

as well as dev.zink.demon.co.uk, for example). If you want the cookie returned only

to the server hosting your script you can use the $SERVER_NAME environmental

variable instead of hard coding the server name. The added advantage of this is that

your code will work as expected even if you move it to a new server. Finally, we pass

0 to setcookie() signaling that cookies can be sent in an insecure environment.

Although you can omit all but the first argument, it is a good idea to include all the

arguments with the exception of the domain and secure. This is because the path

argument is required by some browsers for cookies to be used as they should be.

Also without the path argument, the cookie will only be sent to documents in the

current directory or its subdirectories.

Passing setcookie() an empty string ("") for string arguments or 0 for integer fields

will cause these arguments to be skipped.

Deleting a Cookie

Officially, to delete a cookie you should call setcookie() with the name argument

only:

setcookie("vegetable");

This does not always work well, however, and should not be relied on. It is safest to

set the cookie with a date that has already expired:

setcookie("vegetable", "", time()− 60, "/", "zink.demon.co.uk", 0);

You should also ensure that you pass setcookie() the same path, domain, and

secure parameters as you did when originally setting the cookie.

Creating Session Cookies

To create a cookie that only lasts as long as the user is running his or her browser,

pass setcookie() an expiry argument of 0. While the user's browser continues to run,

cookies will be returned to the server. The browser will not remember the cookie,

however, after it has been quit and restarted.

 361

This can be useful for scripts that validate a user with a cookie, allowing continued

access to personal information on multiple pages after a password has been

submitted. You will not want the browser to have continued access to these pages

after it has been restarted because you can't be sure that it has not been booted by

a new user.

setcookie("session_id", "55435", 0);

An Example— Tracking Site Usage

Imagine that we have been given a brief by a site publisher to use cookies and

MySQL to gather statistics about visitors to the site. The client wants to get figures

for the number of individual visitors to the site, average number of hits per visit for

each visitor, and average time spent on the site for each user.

Our first duty will be to explain the limitations of cookies to the client. First, not all

users will have cookies enabled on their browsers. If not passed a cookie by a

browser, a cookie script is likely to assume that this is the user's first visit. The

figures are therefore likely to be skewed by browsers that won't or can't support

cookies. Furthermore, you cannot be sure that the same user will use the same

browser all the time, or that a single browser won't be shared by multiple users.

Having done this, we can move on to fulfilling the brief. In fact, we can produce a

working example in fewer than 90 lines of code!

We need to create a database table with the fields listed in Table 19.1.

Table 19.1: Database Fields

Name Type Description

id integer An

autoincremente

d field that

produces and

stores a unique

ID for each

visitor

first_visit integer A time stamp

representing

the moment of

 362

the first page

request made

by a visitor

last_visit integer A time stamp

representing

the moment of

the most recent

page request

made by a

visitor

num_visits integer The number of

distinct sessions

attributed to the

visitor

total_duration integer The estimated

total time spent

on the site (in

seconds)

total_clicks integer The total

number of

requests made

by the visitor

To create the MySQL table called track_visit, we need to use a CREATE statement:

create table track_visit (

 id INT NOT NULL AUTO_INCREMENT,

 PRIMARY KEY(id),

 first_visit INT,

 last_visit INT,

 num_visits INT,

 total_duration INT,

 total_clicks INT

);

 363

Now that we have a table to work with, we need to write the code that will open a

database connection and check for the existence of a cookie. If the cookie does not

exist, we need to create a new row in our table, setting up the initial values for the

fields we will maintain. We create this code in Listing 19.2.

Listing 19.2: A Script to Add New User Information to a MySQL Database

 1: <?php

 2: $link = mysql_connect("localhost", "harry", "elbomonkey");

 3: if (! $link)

 4: die("Couldn't connect to mysqld");

 5: mysql_select_db("sample", $link) or die (mysql_error());

 6: if (! isset ($visit_id))

 7: $user_stats = newuser($link);

 8: else

 9: print ''Welcome back $visit_id<P>";

10: function newuser($link)

11: {

12: // a new user!

13: $visit_data = array (

14: first_visit => time(),

15: last_visit => time(),

16: num_visits => 1,

17: total_duration => 0,

18: total_clicks => 1

19:);

20: $query = "INSERT INTO track_visit (first_visit,

21: last_visit,

22: num_visits,

23: total_duration,

24: total_clicks) ";

25: $query .= "values($visit_data[first_visit],

26: $visit_data[last_visit],

 364

27: $visit_data[num_visits],

28: $visit_data[total_duration],

29: $visit_data[total_clicks])";

30: $result = mysql_query($query);

31: $visit_data[id] = mysql_insert_id();

32: setcookie("visit_id", $visit_data[id],

33: time()+(60*60*24*365*10), "/");

34: return $visit_data;

35: }

36: ?>

We connect to the MySQL server in the usual way and select the database that

contains our table (you can read more about working with MySQL in Hour 12,

"Database Integration— MySQL"). We test for the presence of the variable $visit_id,

which is the name of the cookie that identifies an individual user. If this variable

does not exist, then we assume that we are dealing with a new user, calling a

function that we have called newuser().

newuser() requires a link identifier and will return an array of the values that we will

add to our table. Within the function, we create an array called $visit_data. We set

the first_visit and last_visit() elements to the current time in seconds. Because this

is the first visit, we set the num_visits and total_clicks elements to 1. No time has

elapsed in this visit, so we set total_duration to 0.

We use the elements of this array to create a new row in our table, setting each field

to the value of the element of the same name. Because the id field autoincrements,

this does not need to be defined. We can access the value set for id with the

mysql_insert_id() function. Now that we have an ID for our new visitor, we add this

to our $visit_data array, which then accurately reflects the visitor's row in the

MySQL table.

Finally, we use setcookie() to set a visit_id cookie and return the $visit_data array

to the calling code.

 365

The next time our visitor hits this script, the $visit_id variable will have been

populated with the value of the visit_id cookie. Because this variable is set, the user

simply will be welcomed and no action will be taken.

In fact, we will need to update information in the track_visit table if we detect the

return of a known visitor. We will need to test whether the current request is part of

an ongoing visit or represents the beginning of a new visit. We will do this with a

global variable that will define a time in seconds. If the time of the last request

added to this interval is greater than the current time, then we will assume that the

current request is part of a session in progress. Otherwise, we are welcoming back

an old friend.

Listing 19.3 adds a new function, olduser(), to the code created in Listing 19.2.

Listing 19.3: A Script to Track Users Using Cookies and a MySQL Database

 1: <?php

 2: $slength = 300; // 5 minutes in seconds

 3: $link = mysql_connect("localhost", "harry", "elbomonkey");

 4: if (! $link)

 5: die("Couldn't connect to mysqld");

 6: mysql_select_db("sample", $link) or die (mysql_error());

 7: if (! isset ($visit_id))

 8: $user_stats = newuser($link);

 9: else

10: {

11: $user_stats = olduser($link, $visit_id, $slength);

12: print "Welcome back $visit_id<P>";

13: }

14: function newuser($link)

15: {

16: // a new user!

17: $visit_data = array (

18: first_visit => time(),

19: last_visit => time(),

 366

20: num_visits => 1,

21: total_duration => 0,

22: total_clicks => 1

23:);

24: $query = "INSERT INTO track_visit (first_visit,

25: last_visit,

26: num_visits,

27: total_duration,

28: total_clicks) ";

29: $query .= "values($visit_data[first_visit],

30: $visit_data[last_visit],

31: $visit_data[num_visits],

32: $visit_data[total_duration],

33: $visit_data[total_clicks])";

34: $result = mysql_query($query);

35: $visit_data[id] = mysql_insert_id();

36: setcookie("visit_id", $visit_data[id],

37: time()+(60*60*24*365*10), "/");

38: return $visit_data;

39: }

40: function olduser($link, $visit_id, $slength)

41: {

42: // s/he's been here before!

43: $query = "SELECT * FROM track_visit WHERE id=$visit_id";

44: $result = mysql_query($query);

45: if (! mysql_num_rows($result))

46: // cookie found but no id in database -- treat as new user

47: return newuser($link);

48: $visit_data = mysql_fetch_array($result, $link);

49: // there has been another hit so increment

 367

50: $visit_data[total_clicks]++;

51: if (($visit_data[last_visit] + $slength) > time())

52: // still in session so add to total elapsed time

53: $visit_data[total_duration] +=

54: (time() − $visit_data[last_visit]);

55: else

56: // this is a new visit

57: $visit_data[num_visits]++;

58: // update the database

59: $query = "UPDATE track_visit SET last_visit=".time().",

60: num_visits=$visit_data[num_visits], ";

61: $query .= "total_duration=$visit_data[total_duration],

62: total_clicks=$visit_data[total_clicks] ";

63: $query .= "WHERE id=$visit_id";

64: $result = mysql_query($query);

65: return $visit_data;

66: }

67: ?>

We added a new global variable to the script called $slength. This defines the

interval after which we assume that a new visit is taking place. If the $visit_id

variable is found, then we know that the cookie was in place. We call our new

olduser() function, passing it the database link identifier, the $visit_id variable, and

the $slength variable, which we have set to 300 seconds.

Within the olduser() function, we first query the database to acquire the information

about the visitor that we have already stored. We look in the track_visit table for a

row that has the same value in its id field as we have in our $visit_id variable. We

can test the number of values returned by mysql_query() with msql_num_rows(),

passing it a result identifier. If this function returns 0, then we know that there are

no row matches the ID stored in the visit_id cookie, so we call newuser() and end

execution of the function.

 368

Assuming that we have located the row in our table that matches the visit_id cookie,

we use mysql_fetch_array() to populate an array variable ($visit_data) with the

row's field names and values. The current request represents a new hit, so we

increment the $visit_data[total_clicks] element.

We test to see whether the value of the $visit_data[last_visit] element added to the

interval stored in $slength is greater than the current time. If so, it means that less

than $slength seconds have elapsed since the last hit, and we can assume that this

request is part of a current session. We therefore add the time elapsed since the last

hit to the $visit_data[total_duration] element.

If the request represents a new visit, we increment $visit_data[num_visits].

Finally, we use the altered values in the $visit_data array to update the user's row

in the track_visit table and return the $visit_data array to the calling code. Notice

that we set the last_visit field to the current time.

Now that we've created the code, we should create a quick function to demonstrate

it in action. The outputStats() function simply calculates the current user's averages

and prints the result to the browser. In reality, you would probably want to create

some analysis screens for your client, which would collate overall information.

Listing 19.4 creates the outputStats() function. The code from previous examples is

incorporated into this script using an include() statement.

Listing 19.4: A Script to Output Usage Statistics Gathered in Listing 19.3

 1: <?php

 2: include("listing19.3.php"{);

 3: outputStats();

 4: function outputStats()

 5: {

 6: global $user_stats;

 7: $clicks = sprintf("%.2f",

 8: ($user_stats[total_clicks]/$user_stats[num_visits]));

 9: $duration = sprintf("%.2f",

10: ($user_stats[total_duration]/$user_stats[num_visits]));

11: print "<p>Hello! Your id is $user_stats[id]</p>\n\n";

12: print "<p>You have visited

 369

13: $user_stats[num_visits] time(s)</p>\n\n";

14: print "<p>Av clicks per visit: $clicks</p>\n\n";

15: print "<p>Av duration of visit: $duration seconds</p>\n\n" ;

16: }

17: ?>

Figure 19.1 shows the output from Listing 19.4. We use an include() statement to

call the tracking code we have written. We will be including a similar line on every

page of our client's site. The outputStats() function works with the global

$user_stats array variable. This was returned by either newuser() or olduser() and

contains the same information as our user's row in the track_visit table.

To calculate the user's average number of clicks, we divide the $user_stats

[total_clicks] element by the number of visits we have detected. Similarly, we divide

the $user_stats[total_duration] element by the same figure. We use sprint() to

round the results to two decimal places. All that remains is to write a report to the

browser.

We could, of course, extend this example to track user preference on a site, as well

as to log browser types and IP addresses. Imagine a site that analyzes a user's

movements and emphasizes content according to the links he chooses.

Figure 19.1: Reporting Usage Statistics

Working with the Query String

 370

The great drawback of the cookie is its dependence on the client. Not only are you

at the mercy of the user, who may choose not to allow cookies, you must also rely

on the browser's implementation of the standard. Some browsers have documented

bugs concerning the way that they deal with cookies. If you only want to save state

for a single session, you might decide to use a more traditional approach.

When you submit a form using the GET method, its fields and values are URL

encoded and appended to the URL to which the form is sent. They then become

available to the server and to your scripts. Assuming a form with two fields, user_id

and name, the query string should end up looking something like the following:

http://80-www.corrosive.co.uk.proxy.lib.uiowa.edu/test5.php?name=344343&us

er_id=matt+zandstra

Each name and value is separated by an equals (=) sign, and each name/value pair

is separated by an ampersand (&). PHP decodes this string and makes each of the

pairs available in the $HTTP_GET_VARS associative array variable. It also creates a

global variable for each name, populating with the corresponding value. So, to

access the user_id GET variable, you could use either of the following variables:

$HTTP_GET_VARS[user_id];

$user_id;

You are not limited, however, to using forms to send query strings. You can build

your own relatively easily and in so doing pass substantial amounts of information

from page to page.

Creating a Query String
To create a query string, you need to be able to URL encode the keys and values you

want to include. Assume that we want to pass a URL to another page as part of a

query string. The forward slashes and the colon in a full URL would create ambiguity

for a parser. We must therefore convert the URL into hexadecimal characters. We

can do this using PHP's urlencode() function. urlencode() accepts a string and

returns an encoded copy:

print urlencode("http://80-www.corrosive.co.uk.proxy.lib.uiowa.edu");

// prints http%3A%2F%2Fwww.corrosive.co.uk

Now that you can URL encode text, you can build your own query string. The

following fragment builds a query string from two variables:

<?php

$interest = "arts";

$homepage = "http://80-www.corrosive.co.uk.proxy.lib.uiowa.edu";

 371

$query = "homepage=".urlencode($homepage);

$query .= "&interest=".urlencode($interest);

?>

<A HREF="newpage.php?<?print $query ?>">Go

The URL in the link will reach the browser including an encoded query string:

newpage.php?homepage=http%3A%2F%2Fwww.corrosive.co.uk&interest=arts

The homepage and interest parameters will become available within newpage.php

as global variables.

This approach is clumsy, however. Because we have hard-coded variable names

into the query string, we cannot reuse the code easily. To pass information

effectively from page to page, we need to make it easy to embed names and values

into a link and generate a query string automatically. This is especially important if

we are to maintain the benefit of PHP that it is easy for a non-programmer to work

around.

Listing 19.5 creates a function called qlink() that accepts an associative array and

returns a query string.

Listing 19.5: A Function to Build Query Strings

 1: <html>

 2: <head>

 3: <title>Listing 19.5 A function to build query strings</title>

 4: </head>

 5: <body>

 6: <?php

 7: function qlink($q)

 8: {

 9: GLOBAL $QUERY_STRING;

10: if (! $q) return $QUERY_STRING;

11: $ret = "";

12: foreach($q as $key => $val)

13: {

14: if (strlen($ret)) $ret .= "&";

15: $ret .= urlencode($key) . "=" . urlencode($val);

16: }

17: return $ret;

18: }

19: $q = array (name => "Arthur Harold Smith",

20: interest => "Cinema (mainly art house)",

 372

21: homepage =>

''http://80-www.corrosive.co.uk.proxy.lib.uiowa.edu/harold/"

22:);

23: print qlink($q);

24: // prints

name=Arthur+Harold+Smith&interest=Cinema+%28mainly+art+house

25: //

%29&homepage=http%3A%2F%2Fwww.corrosive.co.uk%2Fharold%2F

26: ?>

27: <p>

28: <a href="anotherpage.php?<? print qlink($q) ?>">Go!

29: </p>

30: </body>

31: </html>

qlink() expects an associative array, which it stores in the parameter variable $q. If

$q is not set, we simply return the current script's query string as stored for us in

$QUERY_STRING. In this way, qlink() can be used simply to pass on unchanged GET

request data.

Assuming that $q has been set, we initialize a variable called $ret assigning an

empty string to it. This will contain our query string.

A foreach statement is used to iterate through the $q array, placing each key in

$key and each value in $val.

Key/value pairs are separated from one another by an ampersand (&) character, so

if we are not on our first journey through the loop, we print this character. We know

that the length of the string in $ret will be 0 for the first iteration, so we can use this

fact to avoid prepending & to the string.

We use urlencode() to encode both the $key and $val variables and append them,

separated by an equals (=) character to our $ret variable.

Finally, we return the encoded $query string.

Using this function, we can pass information between pages with the minimum of

PHP code within HTML elements.

Summary

 373

In this hour, we have looked at the two ways of passing information between

requests. You can use these to create multiscreen applications and sophisticated

environments that respond to user preferences.

You learned how to use the setcookie() function to set cookies on the user's browser.

Developing this, you saw how a database could be used in conjunction with cookies

to store information about a user between sessions. You learned about query strings

and how to encode them, and developed a function to automate their creation.

Q&A

Q Are there any serious security or privacy issues raised by cookies?

A A server can only access a cookie set from its own domain. Although a cookie can

be stored on the user's hard drive, there is no other access to the user's file system.

It is possible, however, to set a cookie in response to a request for an image. So if

many sites include images served from a third-party ad server or counter script, the

third party may be able to track a user across multiple domains.

Q The query string looks ugly in the browser window. Would it be true to

say that cookies are the neatest way of saving state?

A Unfortunately, it isn't that simple. At best, cookies are a transparent way of saving

state. Some users, however, set their browsers to warn them every time a cookie is

set. These users are likely to find a site that saves state information frequently

somewhat frustrating.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

What function is designed to allow you to set a cookie on a visitor's browser?

How would you delete a cookie?

What function could you use to escape a string for inclusion in a query string?

Which built-in variable contains the raw query string?

 374

The name/value pairs submitted as part of a query string will become available

as global variables. They will also be included in a built-in associative array.

What is its name?

Activities

Create a user preference form in which a user can choose a page color and enter

a name. Use a cookie to ensure that the user is greeted by name on subsequent

pages and that the page is set to the color of her choice.

Amend the scripts you created in Activity 1 so that the information is stored in a

query string rather than a cookie.

 375

Hour 20: Saving State with Session

Functions

Overview

In the previous hour, we looked at saving state from page to page, using a cookie or

a query string. Once again, PHP4 is one step ahead of us. With the release of PHP4,

functions for managing user sessions were built into the language. These use

techniques similar to those explored in the previous hour, but build them into the

language, making saving state as easy as calling a function.

In this hour, you will learn

What session variables are and how they work

How to start or resume a session

How to register variables with a session

How to destroy a session

How to unset session variables

What Are Session Functions?

Session functions implement a concept that you have already seen. That is the

provision to users of a unique identifier, which can then be used from access to

access to acquire information linked to that ID. The difference is that most of the

work is already done for you. When a user accesses a session-enabled page, she will

either be allocated a new identifier or reassociated with one that has already been

established for her in a previous access. Any global variables that have been

associated with the session will become available to your code.

Both the techniques for transmitting information from access to access that you

looked at in the previous hour are automatically supported by PHP4's session

functions. Cookies are used by default, but you can ensure success for all clients by

encoding the session ID into all links in your session-enabled pages.

Session state is usually stored in a temporary file, though you can expect to see

modules that support the more popular databases soon.

 376

Starting a Session with session_start()
You need to explicitly start or resume a session unless you have changed your

php.ini configuration file. By default, sessions do not start automatically. In

php.ini, you will find a line containing the following:

session.auto_start = 0

By changing the value of session.auto_start to 1, you ensure that a session is

initiated for every PHP document. If you don't change this setting, you need to call

the session_start() function.

After a session has been started, you instantly have access to the user's session ID

via the session_id() function. session_id() allows you to either set or get a

session ID. Listing 20.1 starts a session and prints the session ID to the browser.

Listing 20.1: Starting or Resuming a Session

 1: <?php

 2: session_start();

 3: ?>

 4: <html>

 5: <head>

 6: <title>Listing 20.1 Starting or resuming a session</title>

 7: </head>

 8: <body>

 9: <?php

10: print "<p>Welcome, your session ID is ".session_id()."</p>\n\n";

11: ?>

12: </body>

13: </html>

When this script is run for the first time from a browser, a session ID is generated.

If the page is later reloaded or revisited, then the same session ID is allocated to the

user. This presupposes, of course that the user has cookies enabled on his or her

browser. If you examine headers output by the script in Listing 20.1, you can see

the cookie being set:

HTTP/1.1 200 OK

Date: Sun, 06 Feb 2000 13:50:36 GMT

Server: Apache/1.3.9 (UNIX) PHP/4.0b3

Set-cookie: PHPSESSID=2638864e9216fee10fcb8a61db382909; path=/

 377

Connection: close

Content-Type: text/html

Because start_session() attempts to set a cookie when initiating a session for

the first time, it is important to call it before you output anything else at all to the

browser. Notice that no expiry date is set in the cookie that PHP sets for the session.

This means that the session only remains current as long as the browser is active.

When the user reboots his or her browser, the cookie will not be stored. You can

change this behavior by altering the session.cookie_lifetime setting in your

php.ini file. This defaults to 0, but you can set an expiry period in seconds. This

causes an expiry date to be set for any session cookies sent to the browser.

Working with Session Variables
Accessing a unique identifier on each of your PHP documents is only the start of

PHP4's session functionality. You can register any number of global variables with

the session and then access them on any session-enabled page.

To register a variable with a current session, you must use the session_register()

function. session_register() requires a string representing one or more variable

names and returns true if the registration is successful. The syntax of the argument

you must pass to this function is unusual in that you must pass only the name of the

variable and not the variable itself.

Listing 20.2 registers two variables with a session.

Listing 20.2: Registering Variables with a Session

 1: <?php

 2: session_start();

 3: ?>

 4: <html>

 5: <head>

 6: <title>Listing 20.2 Registering variables with a session</title>

 7: </head>

 8: <body>

 9: <?php

10: session_register("product1");

11: session_register("product2");

12: $product1 = "Sonic Screwdriver";

13: $product2 = "HAL 2000";

14: print session_encode();

15: print "The products have been registered";

 378

16: ?>

17: </body>

18: </html>

The magic in Listing 20.2 will not become apparent until the user moves to a new

page. Listing 20.3 creates a separate PHP script that accesses the variables

registered in Listing 20.2.

Listing 20.3: Accessing Registered Variables

 1: <?php

 2: session_start();

 3: ?>

 4: <html>

 5: <head>

 6: <title>Listing 20.3 Accessing registered variables</title>

 7: </head>

 8: <body>

 9: <?php

10: print "Your chosen products are:\n\n";

11: print "$product1\n$product2\n\n";

12: ?>

13: </body>

14: </html>

Figure 20.1 shows the output from Listing 20.3. As you can see, we have access to

the $product1 and $product2 variables in an entirely new page.

 379

Figure 20.1: Accessing registered variables.

So how does the magic work? Behind the scenes, PHP4 is writing to a temporary file.

You can find out where this is being written on your system with the

session_save_path() function. session_save_path() optionally accepts a path to a

directory and then writes all session files to this. If you pass it no arguments, it

returns a string representing the current directory to which session files are saved.

On my system,

print session_save_path();

prints /tmp. A glance at my /tmp directory reveals a number of files with names like

the following:

sess_2638864e9216fee10fcb8a61db382909

sess_76cae8ac1231b11afa2c69935c11dd95

sess_bb50771a769c605ab77424d59c784ea0

Opening the file that matches the session ID I was allocated when I first ran Listing

20.1, I can see how the registered variables have been stored:

product1|s:17:"Sonic Screwdriver";product2|s:8:"HAL 2000";

When session_register() is called, PHP writes the variable name and value to a file.

This can be read, and the variables resurrected, later.

When you register a variable using session_register(), you can still change its value

at any time during the execution of your script, and the altered value will be

reflected in the session file.

The example in Listing 20.2 demonstrates the process of registering variables with

a session. It is not very flexible, however. Ideally, you should be able to register a

varying number of values. You might want to let users pick products from a list, for

example. Luckily, you can pass the name of an array variable to session_register(),

and it will store and encode this data for you.

 380

Listing 20.4 creates a form that allows a user to choose multiple products. You

should then be able to use session variables to create a rudimentary shopping cart.

Listing 20.4: Registering an Array Variable with a Session

 1: <?php

 2: session_start();

 3: ?>

 4: <html>

 5: <head>

 6: <title>Listing 20.4 Registering an array variable with a session</title>

 7: </head>

 8: <body>

 9: <h1>Product Choice Page</h1>

10: <?php

11: if (isset($form_products))

12: {

13: $products = $form_products;

14: session_register("products");

15: print "<p>Your products have been registered!</p>";

16: }

17: ?><p>

18: <form method="POST">

19: <select name="form_products[]" multiple size=3>

20: <option> Sonic Screwdriver

21: <option> Hal 2000

22: <option> Tardis

23: <option> ORAC

24: <option> Transporter bracelet

25: </select>

26: </p><p>

27: <input type="submit" value="choose">

28: </form>

29: </p>

30: A content page

31: </body>

32: </html>

 381

We start or resume a session with session_start(). This should give us access to any

previously set session variables. Within an HTML form, we set the FORM element's

ACTION property to point to the current document. We then create a SELECT

element named form_products[], which contains OPTION elements for a number of

products. Remember that HTML form elements that allow multiple selections should

have square brackets appended to the value of their NAME arguments. This makes

the user's choices available in an array.

Within the block of PHP code, we test for the presence of the $form_products array.

If the variable is present, we can assume that the form has been submitted. We

assign this variable to another called $products and then register this using

session_register(). We do not directly register $form_products because this will

then conflict with the POST variable of the same name if the form is resubmitted.

At the bottom of this page, there is a link to another, which we will use to

demonstrate our access to the products the user has chosen. We create this new

script in Listing 20.5.

Listing 20.5: Accessing Session Variables

 1: <?php

 2: session_start();

 3: print session_encode();

 4: ?>

 5: <html>

 6: <head>

 7: <title>Listing 20.5 Accessing session variables</title>

 8: </head>

 9: <body>

10: <h1>A Content Page</h1>

11: <?php

12: if (isset($products))

13: {

14: print "Your cart:\n";

15: foreach ($products as $p)

16: print "$p";

17: print "";

18: }

19: ?>

20: Back to product choice page

21: </body>

 382

22: </html>

Once again, we use session_start() to resume the session. We test for the presence

of the $products variable. If it exists, we loop through it, printing each of the user's

chosen items to the browser.

For a real shopping cart program, of course, you would keep product details in a

database and test user input, rather than blindly storing and presenting it, but

Listings 20.4 and 20.5 demonstrate the ease with which you can use session

functions to access array variables set in other pages.

Destroying Sessions and Unsetting Variables

You can use session_destroy() to end a session, erasing all session variables.

session_destroy() requires no arguments. You should have an established session

for this function to work as expected. The following code fragment resumes a

session and abruptly destroys it:

session_start();

session_destroy();

When you move on to other pages that work with a session, the session you have

destroyed will not be available to them, forcing them to initiate new sessions of their

own. Any variables that have been registered will have been lost.

However, session_destroy() does not instantly destroy registered variables. These

will remain accessible to the script in which session_destroy() is called (until it is

reloaded). The following code fragment resumes or initiates a session and registers

a variable called $test, which we set to 5. Destroying the session does not destroy

the registered variable.

session_start();

session_register("test");

$test = 5;

session_destroy();

print $test; // prints 5

To remove all registered variables from a session, you need to use the

session_unset() function. This destroys all variables associated with a session, both

 383

in the session file and within your script. session_unset() is a blunt instrument; use

it carefully.

session_start();

session_register("test");

$test = 5;

session_unset();

session_destroy();

print $test; // prints nothing. The $test variable is no more

Before destroying the session, we call session_unset(), which entirely removes the

$test variable from memory and wipes any other registered session variables.

Passing Session IDs in the Query String

So far you have relied on a cookie to save the session ID between script requests.

On its own, this is not the most reliable way of saving state because you cannot be

sure that the browser will accept cookies. You can build in a failsafe, however, by

passing the session ID from script to script embedded in a query string. PHP makes

a name/value pair available in a constant called SID if a cookie value for a session

ID cannot be found. You can add this string to any HTML links in session-enabled

pages:

<a href="anotherpage.html?<? print SID; ?>">Another page

will reach the browser as

An

other

page

The session ID passed in this way will automatically be recognized in the target page

when session_start() is called, and you will have access to session variables in the

usual way.

If PHP4 was compiled with the --enable-trans-sid option set, you will find that this

query string is automatically added to every link in your pages. This option is

disabled by default, however, so explicitly adding the SID constant to links will make

your scripts more portable.

 384

Encoding and Decoding Session Variables

You have already seen the way in which PHP encodes and saves (serializes) session

variables when you peeked into a session file. You can in fact gain access to the

encoded string at any time with session_encode(). This can be useful in debugging

your session-enabled environments. You can use session_encode() to reveal the

state of all session variables:

session_start();

print session_encode()."
";

// sample output: products|a:2:{i:0;s:8:"Hal 2000";i:1;s:6:"Tardis";}

From the sample output in the previous fragment, you can see the session variables

that are stored. You can use this information to check that variables are being

registered and updated as you expect. session_encode() is also useful if you need to

freeze-dry session variables for storage in a database or file.

After having extracted an encoded string, you can decode it and resurrect its values

using session_decode(). The following code fragment demonstrates this process:

session_start();

session_unset(); // there should now be no session variables

session_decode("products¦a:2:{i:0;s:8:\"Hal 2000\";i:1;s:6:\"Tardis\";}");

foreach ($products as $p)

 {

 print "$p
\n";

 }

// Output:

// Hal 2000

// Tardis

We start a session as usual. To ensure that we are working with a blank canvas, we

use session_unset() to clear all session variables. We then pass an encoded string to

session_decode(). Rather than returning values, session_decode() populates our

name space with the unserialized variables. We confirm this by looping through the

newly resurrected $products array.

 385

Checking that a Session Variable Is Registered

As you have seen, you can test for the presence of a registered variable in a

session-enabled script using isset(). You can, however, explicitly test that a variable

has been registered with a session using the session_is_registered() function. This

accepts a string representing a variable name and returns true if the variable has

been registered.

if (session_is_registered ("products"))

 print "'products' is registered!";

This would be useful if you need to be sure of the source of a variable. You might

want to make sure that the variable you are testing is available to you as a session

variable as opposed to data passed to you as part of a GET request.

Summary

In this hour and the previous hour, you looked at different ways of saving state in a

stateless protocol. All methods use some combination of cookies and query strings,

sometimes combined with the use of files or databases. These approaches all have

their benefits and problems.

A cookie is not intrinsically reliable and cannot store much information. On the other

hand, it can persist over a long period of time.

Approaches that write information to a file or database involve some cost to speed

that might become a problem on a popular site. Nonetheless, a simple ID can unlock

large amounts of data stored on disk.

A query string is unlikely to persist as a cookie will. It looks ugly in the location

window. Even so, it can pass relatively large amounts of information from request to

request. The choice you make depends on the circumstances of your project.

In this hour, you learned how to initiate or resume a session with session_start().

Once in a session, you can register variables with it using session_register(), check

that a variable is registered with session_is_registered(), and unset all registered

variables with session_unset(). You should be able to destroy a session with

session_destroy().

 386

To ensure that as many users as possible get the benefit of your session-enabled

environment, you can now use the SID constant to pass a session ID to the server

as part of a query string.

Q&A

Q Are there any pitfalls with session functions I should be aware of?

A The session functions are generally reliable. However, remember that cookies

cannot be read across multiple domains, so if your project uses more than one

domain name on the same server (perhaps as part of an e-commerce environment),

you might need to consider disabling cookies for sessions by setting the

session.use_cookies

directive to 0 in the php.ini file.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

Which function would you use to start or resume a session?

Which function contains the current session's ID?

How can you associate a variable with a session?

How would you end a session and erase all traces of it for future visits?

How would you destroy session variables both within the current script and the

session?

What does the SID constant return?

How would you test whether a variable called $test is registered with a session?

Activities

In the previous hour's "Activities" section, you created a script that uses a cookie

or query string to save user preferences from page to page. Each page in the

 387

environment should display a user-defined background color and greet the user

by name. Recreate this using PHP4's session functions.

Create a script that uses session functions to remember which pages in your

environment the user has visited. Provide the user with a list of links on each

page to make it easy for her to retrace her steps.

 388

Hour 21: Working with the Server

Environment

Overview

In previous hours, we have looked at techniques for communicating with remote

machines and for gaining input from the user. In this hour, we look outward again,

this time at some techniques for running external programs on our own machine.

The examples in this hour are designed for the Linux operating system, but most of

the principles hold true for Windows.

In this hour, you will learn

How to pipe data to and from external applications

Other ways of sending shell commands and displaying the results on the browser

The security implications of interprocess communication from a PHP script

Opening Pipes to and from Processes with popen()
Just as you open a file for writing or reading with fopen(), you can open a pipe to

a process with popen(). popen() requires the path to a command and a string

representing a mode (read or write). It returns a file pointer that can be used

similarly to the file pointer returned by fopen(). You can pass popen() one of

two mode flags: "w" to write to the process and "r" to read from it. You cannot

both read and write to a process in the same connection.

When you have finished working with the file handle returned by popen(), you

must close the connection by calling pclose(), which requires a valid file handler.

Reading from popen() is useful when you want to parse the output from a process

on a line-by-line basis. Listing 21.1 opens a connection to the GNU version of the

who command and parses its output, adding a mailto link to each username.

Listing 21.1: Using popen() to Read the Output of the UNIX who Command

 1: <html>

 2: <head>

 3: <title>Listing 21.1 Using popen() to read the

 4: output of the UNIX who command</title>

 5: </head>

 6: <body>

 389

 7: <h2>Administrators currently logged on to the server</h1>

 8: <?php

 9: $ph = popen("who", "r")

10: or die("Couldn't open connection to 'who' command");

11: $host="zink.demon.co.uk";

12: while (! feof($ph))

13: {

14: $line = fgets($ph, 1024);

15: if (strlen($line) <= 1)

16: continue;

17: $line = ereg_replace("^([a-zA-Z0-9_\−]+).*",

18: "\\1
\n",

19: $line);

20: print "$line";

21: }

22: pclose($ph);

23: ?>

24: </table>

25: </body>

26: </html>

We acquire a file pointer from popen() and then use a while statement to read

each line of output from the process. If the output is a single character, we skip the

rest of the current iteration. Otherwise, we use ereg_replace() to add an HTML

link and table cells to the string before printing the line. Finally, we close the

connection with pclose(). Figure 21.1 shows sample output from Listing 21.1.

 390

Figure 21.1: Reading the output of the UNIX who command.

You can also use a connection established with popen() to write to a process. This

is useful for commands that accept data from standard input in addition to

command-line arguments. Listing 21.2 opens a connection to the column

application using popen().

Listing 21.2: Using popen() to Pass Data to the column Application

 1: <html>

 2: <head>

 3: <title>Listing 21.2 Using popen() to pass

 4: data to the column command</title>

 5: </head>

 6: <body>

 7: <?php

 8: $products = array(

 9: array("HAL 2000", 2, "red"),

10: array("Tricorder", 3, "blue"),

11: array("ORAC AI", 1, "pink"),

12: array("Sonic Screwdriver", 1, "orange")

13:);

14: $ph = popen("column -tc 3 -s / > purchases/user3.txt", "w")

15: or die("Couldn't open connection to 'column' command");

16: foreach ($products as $prod)

17: fputs($ph, join('/', $prod)."\n");

18: pclose($ph);

19: ?>

 391

20: </table>

21: </body>

22: </html>

The purpose of the script in Listing 21.2 is to take the elements of a

multidimensional array and output them to a file as an ASCII table. We open a

connection to the column command, adding some command-line arguments. -t
requires that the output should be formatted as a table, -c 3 determines the

number of columns we require, and -s / sets the "/" character as the field delimiter.

We ensure that the results will be written to a file called user3.txt. Note that the

purchases directory must exist on your system and that your script must be able

to write to it.

Notice that we are doing more than one thing with this command. We are calling the

column command and writing its output to file. In fact, we are issuing commands

to a noninteractive shell. This means that in addition to piping content to a process,

we can initiate other processes as well. We could even have the output of the

column command mailed on to someone:

popen("column -tc 3 -s / | mail matt@zink.demon.co.uk", "w")

This level of flexibility can open our system to a grave threat if we ever pass user

input to a PHP function that issues shell commands. We will look at precautions you

can take later in the hour.

Having acquired a file pointer, we loop through the $product array. Each value is

itself an array, which we convert to a string using the join() function. Rather than

joining on a space character, we join on the delimiter we established as part of our

command-line arguments. Using the "/" character to join the array is necessary

because the spaces in the product array would otherwise confuse the column

command. Having joined the array, pass the resultant string and a new line

character to the fputs() function.

Finally, we close the connection. Taking a peek into the user3.txt file, we should

see the table neatly formatted:

HAL 2000 2 red

Tricorder 3 blue

ORAC AI 1 pink

Sonic Screwdriver 1 orange

We could have made the code more portable by formatting the text using the

sprintf() function, but the approach you take is a matter of choice.

 392

Running Commands with exec()
exec() is one of many functions that enable you to pass commands to the shell.

The function requires a string representing the path to the command that you want

to run. It also optionally accepts an array variable that will be populated with the

command's output, and a scalar variable that will be populated with the command's

return value.

To get a listing for the current working directory, for example, you might pass

exec() the command "ls -al.". We do this in Listing 21.3, printing the result to

the browser.

Listing 21.3: Using exec() to Produce a Directory Listing

 1: <html>

 2: <head>

 3: <title>Listing 21.3 Using exec() to produce a directory listing</title>

 4: </head>

 5: <body>

 6: <?php

 7: exec("ls -al .", $output, $return);

 8: print "<p>Returned: $return</p>";

 9: foreach ($output as $file)

10: print "$file
";

11: ?>

12: </table>

13: </body>

14: </html>

Notice that the ls command returns 0 on success. If it were unable to find or read

the directory passed to it, it would have returned 1.

Once again, we have reinvented the wheel to a certain extent with this example. We

could have used the opendir() and readdir() functions to acquire a directory

listing. There will be times, however, when a command on your system can achieve

an effect that would take a long time to reproduce using PHP's functionality. You

might have created a shell or Perl script that performs a complex task. If speed of

development is an important factor in your project, you might decide that it is worth

calling the external script instead of porting it to PHP, at least in the short term.

Remember, however, that calling an external process will always add an overhead

to your script in terms of both time and memory usage.

 393

Figure 21.2 shows the output from Listing 21.3.

Figure 21.2: Using exec() to produce a directory listing.

Running External Commands with system() or the
Backtick Operator
The system() function is similar to the exec() function in that it launches an

external application. It requires the path to a command and, optionally, a variable,

which will be populated with the command's return value. system() prints the

output of the shell command directly to the browser. The following code fragment

prints the manual page for the man command itself:

<?php

print "<pre>";

system("man man | col -b", $return);

print "</pre>";

?>

We print PRE tags to the browser to maintain the formatting of the page. We use

system() to call man, piping the result through another application called col,
which reformats the text for viewing as ASCII. We capture the return value of our

shell command in the $return variable. system() returns its output.

You can achieve a similar result by using the backtick operator. This involves

surrounding a shell command in backtick (`) characters. The enclosed command

will be executed, and any output returned. You can print the output or store it in a

variable.

We can re-create the previous example using backticks:

print "<pre>";

print .man man | col -b.;

 394

print "</pre>";

Note that we have to explicitly print the return value from the backtick operator.

Plugging Security Holes with escapeshellcmd()
Before looking at escapeshellcmd(), let's examine the danger it guards

against. We want to allow users to type in the names of manual pages and view

output online. Now that we can output one manual page, it is a trivial matter to

output any available page. Do not install the code in Listing 21.4; we are

deliberately leaving a major security gap unplugged.

Listing 21.4: Calling the man Command

 1: <html>

 2: <head>

 3: <title>Listing 21.4 Calling the man command.

 4: This script is not secure</title>

 5: </head>

 6: <body>

 7: <form>

 8: <input type="text" value="<?php print $manpage; ?>" name="manpage">

 9: </form>

10: <pre>

11: <?php

12: if (isset($manpage))

13: system("man $manpage | col -b");

14: ?>

15: </pre>

16: </table>

17: </body>

18: </html>

We extend our previous examples a little by adding a text field and including the

value from the form submission to the shell command we pass to the system()

function. We are being trusting, however. On a UNIX system, a malicious user would

be able to add his own commands to the manpage field, thus gaining limited

access to the server. Figure 21.3 shows a simple hack that could be applied to this

script.

 395

Figure 21.3: Calling the man command.

The malicious user has submitted the value xxx; ls -al via the form. We have

stored this value in the $manpage variable. After we combine this text with the

shell command string we pass to system(), we end up with the following string:

"man xxx; ls -al | col -b"

This instructs the shell to fetch the manual page for xxx, which doesn't exist. It

then performs a full directory listing, running the output through the col command.

If you think that this is as bad as it gets, think again. An unfriendly visitor can list

any readable directory on your system. He or she can even read your

/etc/passwd file by adding the following line to the form field:

xxx; cat /etc/passwd

Fortunately, our encrypted passwords are stored in a file called /etc/shadow,

which can only be read by the root user, but this still represents a grave breach in

security. We clearly cannot allow this to happen. The safest way of protecting

against this is never to pass user input directly to a shell. You can make yourself a

little safer, though, by using the escapeshellcmd() function to add

backslashes to any metacharacters that the user might submit.

escapeshellcmd() requires a string and returns a converted copy. We can now

amend our code, making our script a little safer. As shown in Listing 21.5.

Listing 21.5: Escaping User Input with the escapeshellcmd() Function

 1: <html>

 2: <head>

 3: <title>Listing 21.5 Escaping user input with

 4: the escapeshellcmd() function</title>

 5: </head>

 396

 6: <body>

 7: <form>

 8: <input type="text" value="<?php print $manpage; ?>" name="manpage">

 9: </form>

10: <pre>

11: <?php

12: if (isset($manpage))

13: {

14: $manpage = escapeshellcmd($manpage);

15: system("man $manpage | col -b");

16: }

17: ?>

18: </pre>

19: </table>

20: </body>

21: </html>

If the user attempts to enter "xxx; cat /etc/passwd " now, it will be

amended to "xxx\;cat /etc/passwd ", preventing a new command from

being issued. In fact, she will be presented with the manual page for the cat
command rather than our password file!

Although you can improve security by using escapeshellcmd(), avoid passing

usersubmitted content to the shell. We could make our script even safer by

compiling a list of all valid manual pages on our system and testing user input

against this before calling system(). We do something similar in the next section.

Running External Applications with passthru()
passthru() is similar to system() except that any output from the shell

command you send will not be buffered. This makes it suitable for running

commands that produce binary as opposed to text data. passthru() accepts a

shell command and an optional variable. The variable will be filled with the return

value of the command.

Let's construct an example. We want to create a script that outputs images as

thumbnails and that can be called from HTML or PHP pages. We are going to let

external applications do all the work so that our script will be simple. Listing 21.6

shows the code that locates the image and outputs the data to the browser.

Listing 21.6: Using passthru() to Output Binary Data

 397

 1: <?php

 2: if (isset($image) && file_exists($image))

 3: {

 4: header("Content-type: image/gif");

 5: passthru("giftopnm $image | pnmscale − xscale .5 − yscale .5 | ppmtogif");

 6: }

 7: else

 8: print "The image $image could not be found";

 9: ?>

Notice that we have not used escapeshellcmd(). Instead, we have tested the

user input against our file system using the file_exists() function. We will not

pass the $image variable to the shell if the image requested does not exist. We

could make the script safer still if we restrict the file extension we will accept and the

directory that can be accessed.

In the call to passthru(), we issue a command that calls three applications. Note

that for this script to work on your system, you must have these applications

installed, and they must be available in your path. First, we call giftopnm,

passing it the $image variable. This reads a GIF image and outputs data in

portable anymap format. This output is piped to pnmscale, which scales the

image to 50 percent of its original size. The output from pnmscale is in turn piped

to ppmtogif, which converts the data to GIF format. This data is finally output to

the browser.

We can now call this script from any Web page.

<img src="listing21.6.php?image=<?php print

urlencode("/path/to/image.gif") ?>">

Calling an External CGI Script with the virtual()
Function
If you are converting a site from plain HTML to PHP-enabled pages, you may have

noticed that your server-side includes no longer work. If you are running PHP as an

Apache module, you can use the virtual() function to call CGI scripts, such as Perl

or C Web counters, and include their output in your pages. Any CGI script you write

must output HTTP headers.

Let's write a simple Perl CGI script. If you don't know Perl, don't worry about this. It

simply outputs an HTTP header and all the environmental variables available to it:

 398

#!/usr/bin/perl -w

print "Content-type: text/html\n\n";

foreach (keys %ENV){

 print "$_: $ENV{$_}
\n";

}

Assuming that this script is saved in an executable file called test.pl in a
cgi-bin directory, you can now call it with the virtual() function, including its

output in your PHP document:

<?php

virtual("/cgi-matt/test.pl");

?>

Summary

In this hour, you learned how to communicate with the shell and through it with

external applications. PHP is a powerful language, but it sometimes will be faster to

call on an application than it will be to create similar functionality yourself.

You learned how to pipe data to and from a command using the popen() function.

This approach is useful for applications that accept data on standard input and when

you want to parse data as it is sent to you by an application.

You learned how to use exec(), system(), and the backtick operator to pass

commands to the shell and to acquire user input. You learned about the dangers of

passing user input to the shell and examined the escapeshellcmd() function, which

will afford you some protection from malicious input. You learned how to use the

passthru() function to accept binary data resulting from a shell command. Finally,

you learned how to emulate serverside includes with the virtual() function.

Q&A

Q You've mentioned security a lot in this hour. Where can I go to get more

information about security on the Web?

A Probably the most authoritative introduction to Web security is the Frequently

Asked Questions document by Lincoln Stein (author of the famous Perl module,

CGI.pm). You can find this at http://www.w3.org/Security/Faq/.

 399

Q When should I consider calling an external process rather than

re-creating its functionality in a script?

A The issues you should consider when weighing this are portability, speed of

development, and efficiency.

If you build functionality into your script instead of relying on an external process,

your script should run easily on different platforms or on systems that don't include

the third-party application you would be calling. For simple tasks (such as obtaining

a directory listing, for example), it is likely to be more efficient to handle the

problem within your code, saving you the overhead of spawning a second process

every time your script is called.

On the other hand, some tasks may be difficult to achieve in PHP or slow to complete

(grepping a large file, for example). In these cases, it may be advisable to use a tool

specifically designed for the job.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

Which function would you use to open a pipe to a process?

How would you read data from a process after you have opened a connection?

How can you write data to a process after you have opened a connection to it?

Will the exec() function print the output of a shell command directly to the

browser?

What does the system() function do with the output from an external command

it executes?

What does the backtick operator return?

How can you escape user input to make it a little safer before passing it to a shell

command?

How might you execute an external CGI script from within your script?

 400

Activities

Create a script that uses the UNIX ps command to output the currently running

processes to the browser. Given that knowledge is power, it might not be good

idea to make this script available to your users!

Check the ps man page for command-line arguments for the ps command. Add

a form to your script to allow users to choose from a range of command-line

arguments to ps so that they can change the information output. Do not send

any user input directly to the command line.

 401

Hour 22: Debugging

Overview

At the time of this writing, support for the PHP debugger has been removed from

PHP4. Debugging features such as stack traces are promised for the future, so it is

likely that a more advanced debugger will become available in the near future, if it

is not already part of your release. For now, we will examine some of the simple

techniques you can use to track down bugs in your code.

In this hour, you will learn

How to find out about PHP's configuration

How to find out about the variables automatically made available by PHP

How to write error messages to a log file

How to keep track of data in your code

How to spot common errors

Getting Information About PHP and Your Script

When a script is not working as it should, one of your first steps should be to check

your configuration. You will also want to know more about the variables that your

script has available to it. If you're still puzzled, you might want to take a fresh look

at your source code using syntax coloring to pinpoint potential problem areas. This

section looks at two techniques you can use to get more information about your

distribution of PHP and your script in particular.

phpinfo()

phpinfo() is one of the most powerful debugging tools at your disposal. It is a

function that when included in a script gives you information about PHP, your server

environment, and the variables in your script. It requires no arguments. phpinfo()

returns only a boolean, but it outputs neatly formatted HTML to your browser

window. You can see the output of phpinfo() in Figure 22.1.

 402

Figure 22.1: Printing PHP information.

The page begins with information about the PHP version that you are running, the

server you are running it with, your system, and credits. You then see a table

detailing the PHP configuration settings. You can change these settings in your

php.ini file.

Imagine that you have a form field called "user," but for some reason your script

never has access to a defined $user variable. A look at the PHP configuration

settings might tell you what is going on. You notice the following settings:

track_vars On

gpc_globals Off

You have located your problem. track_vars defines whether to store GET variables

in the $HTTP_GET_VARS[] array, POST variables in the $HTTP_POST_VARS[] array,

and cookie variables in the $HTTP_COOKIE_VARS[] array. gpc_globals defines

whether to make each individual variable acquired from POST, GET, and cookies

available as individual global variables. Both are on by default, but in your

configuration file, you have disabled gpc_globals. You now have two possible

solutions. First, you can find your php.ini file and change the setting for gpc_globals.

Don't know where it is? Well the output from phpinfo() tells you that as well! Second,

you could change your code to access $HTTP_POST_VARS[user] rather than $user.

You will also find a table giving you information about your session configuration. If

this table is absent, you do not have session support compiled into PHP. Within this

table, you can find information that will help you track down problems with your

session code. You might have created sessions that you want to persist over time,

 403

for example. If sessions are lost when your user closes her browser and you see the

following setting

session.cookie_lifetime 0

you have located your problem. You will need to set the session.cookie_lifetime

value in php.ini to the number of seconds you want a session to persist.

You may even see something like

session.use_cookies 0

which means that cookies are disabled for sessions. In this case, you would need to

rely on the query string, or to change this setting in php.ini.

You will also find a lot of information about your server and its environment,

especially if you are running Apache. In particular, you can see a listing of the entire

request and response HTTP headers associated with your script, as well as Apache

environment variables such as HTTP_REFERER.

If you have support for a database compiled into PHP, you will see configuration

information relating to this. In particular, you may be able to check settings such as

the default user, host, and port for the database.

Finally, and perhaps most important, you can see a list of all the global variables

that PHP makes available to your script, complete with their values. Let's test this.

Listing 22.1 creates a simple script that contains an HTML form and sets a cookie.

Listing 22.1: A Script to Test phpinfo()

 1: <?php

 2: setcookie("id", " 2344353463433", time ()+3600, "/");

 3: ?>

 4: <html>

 5: <head>

 6: <title>Listing 22.1 A script to test phpinfo()</title>

 7: </head>

 8: <body>

 9: <form action="<?php print "$PHP_SELF" ?>" METHOD="get">

10: <input type="text" name="user">

 404

11:

12: <select name="products[]" multiple>

13: <option>Potatoes

14: <option>Cheese

15: <option>Bread

16: <option>Poultry

17: </select>

18:

19: <input type="submit" value="test!">

20: </form>

21: <p></p>

22: <hr>

23: <p></p>

24: <?php

25: phpinfo();

26: ?>

27: </body>

28: </html>

When the form in Listing 22.1 is submitted, the script will have access to the values

entered by the user. A cookie will also have been set. We call phpinfo() so that we

can see these variables. You can see the relevant portion of the output from

phpinfo() in Figure 22.2.

As you can see, the cookie and $HTTP_GET_VARS variables are visible. We included

a multiple choice form element called products[], and the entire array is formatted.

 405

Figure 22.2: Accessing global variables.

It can sometimes be difficult to keep track of form submissions and cookies in larger

projects, which makes phpinfo() an invaluable debugging tool.

Viewing Source with Syntax Coloring
If you can't find your problem using phpinfo(), your configuration might not be to

blame. It is a good idea to take a look at your code again. PHP provides a

mechanism by which you can view the source of a script, even coloring keywords,

comments, strings, and HTML for you.

If you are running Apache, you can change your configuration file (usually

httpd.conf) to include a line that maps an extension to syntax coloring mode.

AddType application/x-httpd-php-source .phps

After you have added this line, any file with a .phps extension will be displayed as

syntaxcolored source. If you cannot change your server's configuration files, you

can still take advantage of this feature using the show_source() function.

show_source() requires the path to a file and outputs its contents to the browser in

syntax coloring mode.

Listing 22.2 builds a simple script that you can use to view the source of your

projects.

Listing 22.2: Viewing the Source of a Document

 1: <html>

 2: <head>

 3: <title>Listing 22.2 Viewing the source of a document</title>

 4: </head>

 406

 5: <body>

 6: <form action="<?php print $PHP_SELF ?>" method="get">

 7: Enter file name:

 8: <input type="text" name="file" value="<?php print $file; ?>">

 9: <p></p><hr><p></p>

10: <?php

11: if (isset($file))

12: show_source($file) or print "couldn't open \"$file\"";

13: ?>

14: </body>

15: </html>

Figure 22.3 shows Listing 22.2 in operation.

Figure 22.3: Showing syntax coloring.

Why would you want to use this feature? After all, you can view the source in your

usual editor. The benefit lies in the syntax coloring. The fact that many keywords

are highlighted means that a misspelling will be rendered in the default color.

Another common problem that can be difficult to track down is the failure to close a

set of quotation marks. Because the PHP interpreter treats all text after the first set

of quotation marks as a string, it often reports an error in the wrong place. Quoted

strings are highlighted, however, so syntax coloring mode enables you to see the

entire run-on string.

Table 22.1 shows the different aspects of your code that will be highlighted.

Table 22.1: Syntax Coloring

php.ini Setting Default Code Highlights

 407

Color

highlight.string Red #DD0000 Quotation

marks and

quoted

text.

highlight.comment Orange #FF8000 PHP

comments.

highlight.keyword Green #007700 Many

built-in

functions.

Language

constructs.

Operators.

highlight.default Blue #0000BB All other

PHP.

highlight.html Black #000000 HTML code.

PHP Error Messages
As you've worked through this book, you might have come across PHP error

messages occasionally. You might have forgotten to end a statement with a

semicolon, for example, or misspelled a function name. These messages are useful

in debugging your code. You can ensure that errors are printed to the browser by

setting the display_errors option in php.ini to "On." Don't forget that you can use

phpinfo() to check that this option is enabled.

When you are sure that your scripts output error information to the browser, you

can decide how strict you want the messages to be. If you want to set a default level,

you can do so in php.ini by assigning a number to the error_reporting option.

Fortunately, error reporting numbers are stored in constant variables, which makes

it easy to choose the level you require. Table 22.2 lists the different levels that you

can apply.

Table 22.2: Levels of Strictness for Error Reporting

Variable Name Description Action

E_ALL All Every kind of

error

Dependent

on error

encountered

 408

E_ERROR Errors Fatal errors

(memory

allocation

problems,

for example)

Notify and

end script

execution

E_WARNING Warnings Nonfatal

errors (such

as

malformed

function

arguments)

Notify of

problem but

do not end

execution

E_PARSE Parser

errors

Parser does

not

understand

syntax.

Notify and

end script

execution

E_NOTICE Notices Potential

problem

(uninitialized

variables, for

example)

Notify and

continue

E_CORE_ERROR Start-up

errors

Fatal errors

encountered

during

start-up

Abort

start-up

E_CORE_WARNING Start-up

warnings

Nonfatal

errors

encountered

during

start-up

Notify and

continue

You cannot use these settings to change the action taken when an error is found;

you only have control over whether the error is reported to the browser.

You are likely to want to combine two or more of these error reporting levels. You

can do this by separating the constants you would like to apply with a pipe (|)

symbol. For example,

error_reporting = E_ERROR|E_WARNING

will set the error reporting to include both errors and warnings.

If you wish to include all error types, you can use E_ALL. What would you do if you

 409

would like to report all error types apart from one?

error_reporting = E_ALL & ~E_NOTICE

will set error reporting to all errors apart from notices. E_ERROR | E_WARNING and

E_ALL & ~E_NOTICE are binary arithmetic expressions that produce a new number

that defines the level of error reporting. Binary arithmetic is beyond the scope of this

book, but the procedure should be clear enough.

You can override the error_reporting option in php.ini with a function unsurprisingly

called error_reporting(). This requires an integer representing the level of error

reporting you want set for the execution of your script, and returns the previous

error reporting setting. Once again you can use the constants that PHP provides for

you. Let's look at an example where changing the level of error reporting can help

you. See if you can spot the deliberate mistake in Listing 22.3

Listing 22.3: A Deliberate Error

1: <?php

2: error_reporting(E_ERROR | E_WARNING | E_PARSE);

3: $flag = 45;

4: if ($flg == 45)

5: print "I know that \$flag is 45";

6: else

7: print "I know that \$flag is NOT 45";

8: ?>

As you can see, we are testing the $flag variable, but we have misspelled it. There

is no fatal error in this script, so it will always run. At an error reporting level of

E_ERROR | E_WARNING | E_PARSE (which resolves to 7), there will be no warning,

and your code might find its way into a production environment, where it will wait

until the worst possible moment to manifest itself. If we change the value passed to

error_reporting() to E_ERROR | E_WARNING | E_PARSE | E_NOTICE (which

resolves to 15 and includes notices), however, this script will generate the following

output:

Warning: Undefined variable: flg in

/home/matt/htdocs/php-book/debug/listing22.3.php on line 4

I know that $flag is NOT 45

Not only do we now know that there is a problem, we also know the line number at

which it was found. We could achieve the same effect by setting the error reporting

level to E_ALL.

 410

Setting the error reporting level to include notices can have less fortunate side

effects, though. You might occasionally want to work with an undefined variable.

Consider the following code fragment:

<INPUT TYPE="text" NAME="user" VALUE="<? print $user; ?>">

We have taken advantage of the fact that printing an undefined variable has a

similar effect to printing an empty string (no effect at all). The "user" field in the

preceding form will include a previously submitted value for $user, or nothing at all.

If we were to call error_reporting() with an argument of 15, we would get an error

message.

Writing Error Messages to a Log File

The bugs that we have been chasing so far are immediate problems for the most

part. In other words, they are caught as you write your code. Some bugs, though,

occur later on, perhaps as a result in changes to a script's environment. Imagine a

script that writes data to a text file when a user submits a form. You test your script,

monitor its performance for a while in a production environment, and then leave it

to get on with its job. A few weeks later, you mistakenly remove the directory that

contains the file to which the script is programmed to write. The error caused by this

could go unrecorded.

PHP provides error_log(), a built-in method of logging errors to the server's error log

or to a file of your choosing. error_log() requires two arguments: the error message

itself and an integer representing an error type. Depending on the value of the error

type argument, error_log will also accept an additional two arguments: a path to a

file or an email address and additional headers for a mail message.

Table 22.3 lists the available error types.

Table 22.3: Error Type Arguments for the error_log() Function

Value Description

0 Write error

to error log

defined by

php.ini

error_log

option

1 Send error

 411

as mail to

address in

destination

argument

3 Append error

to file in

destination

argument

To write an error message to an error log, a destination must be set for the error_log

option in php.ini. You can check whether this has been done by running a script

containing a phpinfo() function call. If it hasn't, you can edit php.info so that errors

are logged to a file of your choice:

error_log = /home/matt/logs/php_errors

If you are running NT or UNIX, you can alternatively assign the string "syslog" to

error_log. Calls to error_log() that include an error type 0 argument will then be

written to the system log for UNIX or the event log for NT. The following code

fragment calls error_log() when we cannot open a file for reading:

fopen("./important.txt", "a")

 or error_log(__FILE__." line ".__LINE__.":

Couldn't open important. txt", 0);

We build an error message that includes the constant __FILE__, which gives us the

path to the currently running script, the constant __LINE__, which holds the current

line, and a description of the problem. We opt to write to the default error log by

passing a 0 as our error type argument. We might get an error looking like this:

/home/matt/htdocs/php-book/debug/test5.php line 4:

Couldn' t open important.txt

If we need to write an error message to a specific file, we must pass error_log() an

argument of 3:

if (! $did = mysql_connect("localhost", "matt", "pumpkin"))

 {

 error_log(date("d/m/Y H I")." Couldn't connect to database",

 3, "dberrors.txt");

 412

 return false;

 }

When we output an error type of 3, we must also supply a destination argument so

that the function knows where to write the error message.

We can also set error_log() to mail its error. This requires an error type of 1:

if (! file_exists("crucial.txt"))

 error_log("Oh no! crucial.txt is gone!", 1, "matt@corrosive.co.uk");

When we output an error of type 1, we need to supply a destination argument

containing the address to which the message should be sent.

Getting the Error String

When you are writing an error message to a file or email, it can be useful to have

access to the error message produced by PHP. To do this, you must set the

track_errors option in your php.ini file to "On." You can then access the most recent

error in the variable $php_errormsg (much like Perl's $! variable).

This can make your error messages more informative. The following code produces

an error message that tells more about the error than our previous messages:

fopen("./important.txt", "a")

 or error_log(__FILE__." line ".__LINE__.": $php_errormsg", 0);

The full message might now be something like the following:

/home/matt/htdocs/php-book/debug/test5.php line 21:

fopen("./important.txt","a") - Permission denied

Manual Debugging
The simplest way of debugging a script is to scatter it with print statements,

outputting the status of any variables that you are interested in to the browser. It is

always difficult to pin down a bug that does not generate an error message. Often a

variable in your script will contain an unexpected value.

A typical debug print statement might look like this:

print "<p>yep -- $val</p>";

This is the sort of quick test that you might add to a project to check that a function

or loop has been reached and to confirm the value of the $val variable.

 413

You might be neater and better organized than I am, however, and create your own

convention.

print "<p>" .__LINE__.": test is $test</p>";

You could even create a function to help with outputting debug messages, perhaps

using include() to make it available to your script during development. Listing 22.4

writes a function that enables us to create structured debug messages.

Listing 22.4: A Function to Format Debugging Messages

 1: <?php

 2: function debug($line, $msg)

 3: {

 4: static $calls = 1;

 5: print "<P><HR>\n";

 6: print "DEBUG $calls: Line $line: $msg
";

 7: $args = func_get_args();

 8: if (count($args) % 2)

 9: print "Odd number of args
";

10: else

11: {

12: for ($x=2; $x< count($args); $x += 2)

13: {

14: print " \$$args[$x]: ".$args[$x+1];

15: print " (".gettype($args[$x+1]).")
\n";

16: }

17: }

18: print "<hr><p></p>\n";

19: $calls++;

20: }

21: $test = 55;

22: debug(__LINE__, "First message", "test", $test);

23: $test = 66;

24: $test2 = $test/2;

25: debug(__LINE__, "Second message", "test", "$test, "test2", $test2);

26: ?>

The debug() function requires a line number and a message. Thereafter, you can

pass it any number of name/value pairs, and it will output these in a list. Printing the

 414

line number and the message is the easy part. We then take advantage of a feature

of PHP4 that allows functions to accept variable numbers of arguments. No matter

how many arguments the calling code includes, we can get them all by using the

func_get_args() function, which returns an array of all the arguments sent to our

function. We assign this array to the variable $args. We are expecting name/value

pairs, so we print a warning to the browser if we have been passed an odd number

of arguments. Otherwise, we loop through the arguments (starting with the third)

printing each name value pair, as well as the data type of each variable.

Figure 22.4 shows the output of Listing 22.4.

Figure 22.4: Using the debug() function.

Common Errors

We all make mistakes, especially as a deadline looms. There are some traps that

most coders fall into sooner or later. As you become more used to coding, you tend

to pay less attention to your fingers as they clatter away on the keyboard. This

means that you code faster but also that subtle mistakes creep in as your mind

rushes ahead to the next problem.

Can you spot the error in the next fragment of code?

$var=0;

while ($var < 42);

 {

 print "$var
";

 $var++;

 415

 }

You will get so used to typing a semicolon after each statement that it is easy to add

one where it does not belong. By placing a semicolon after the test expression of the

while statement, we ended the while statement. The $var variable will never be

incremented, so the loop will never end.

How about this?

$val = 1;

while ($val != 50)

 {

 print $val;

 $val+=2;

 }

while statements depend on an expression evaluating to false to end their execution.

In the preceding example, our test expression will only return false when $val is

equivalent to 50. We initialize $val to 1 and then increment it by 2 for each iteration

of the loop. $val is therefore never equivalent to 50. Just as common, but more

obvious, is to omit the statement that increments a counter variable altogether.

The error in the following fragment is common and quite insidious:

if ($test = 4)

 {

 print "$test is 4<P>\n";

 }

We have assigned 4 to $test rather than testing for equivalence between the two.

The assignment operator returns the value of its right-hand operand, so this test will

always resolve to true, as well as overwrite the original value stored by $test. Errors

of this kind are difficult to spot on the page and won't prevent your code from

executing.

Strings present their own problems. I am particularly prone to the next mistake:

$test = "Today's date is . date('d/m/Y H I');

print $test;

 416

Because we did not close the quotation marks after opening our string, the PHP

interpreter has no idea where the string ends. This will almost always cause an error,

but can be difficult to track down because the interpreter will often give you the

wrong line number. The failure to close brackets of any kind can cause similar

problems.

The final error we will look at is easy to track down:

print "You are logged in as "$user" at $domain";

You must escape quotation marks in a string if it is surrounded by quotation marks

of the same kind. The previous fragment should be rewritten as follows:

print "You are logged in as \"$user\" at $domain";

So, the common errors discussed in this section include the following:

Prematurely ending a loop statement by including a semicolon after the test

expression

Failure to create the condition that will allow a while statement to end execution

Using an assignment operator instead of an equivalence operator

Failure to close quotation marks or brackets

Using unescaped quotation marks within a string enclosed by quotation marks of

the same type

Summary

Debugging is probably the most frustrating part of the development process. You

can make your life easier by being systematic about your approach.

In this hour, you learned about the phpinfo() function and how it can give you

information about your configuration and the environmental variables available to

you. You learned about the error_log() function and the ways in which you can use

it to write error messages to a file or to an email. You learned about manual

debugging using print statements or a function to output the value of variables to

the browser. If you know about the data that your script is manipulating, you can

track down bugs quickly and easily.

Finally, you learned about some of the errors that occasionally blight even the most

experienced programmer's code.

 417

Q&A

Q Is there a technique for minimizing bugs and errors in my code?

A Stay vigilant! In fact, it is all but impossible to create code that runs perfectly the

first time. Write code that is as modular as possible so that an error can be isolated

easily. Test as often as possible. Don't write a script and then run it. Write a few

lines, test your script, and then write a few more lines. Test your assumptions and

prepare for the worst. If your script depends on the existence or writability of a file,

for example, be prepared to handle the possibility of the file's absence.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

What function outputs useful information about your PHP configuration to the

browser?

What function could you use to include a syntax-colored source listing of a PHP

script?

Which php.ini directive enables you to control the strictness of error messages?

What function can be used to override this directive?

Which function allows you to log errors?

What built-in variable will contain the error message if the php.ini track_errors

option is allowed?

Activity

By now, you should be considering your own projects. Review your code or

planning in light of the techniques and issues discussed in this hour.

 418

Hour 23: An Example (Part 1)

Overview

If you've stayed the course all the way through this book, you should now have a

good basis in the nuts and bolts of PHP. In this hour and the next, we will build a

complete working example that draws on many of the techniques that we discussed

in previous hours.

In this hour, you will learn

How to create a project plan

How to use include() to create function libraries and flexible navigation elements

How to maintaining state with query strings, databases, and session functions

How to separate HTML from PHP to enable non-technical designers and builders

to work with dynamic environments

How to use the header() function to redirect the user

How to build a strategy for password protecting user accounts within a service

The Brief

Suppose that a community portal has asked us to build a small interactive events

diary for the small town that it serves. Clubs and bands should be able to register

with the service to publicize their events. Users can then check the event database

to see what's going on. Users should be able to narrow their search according to the

type of club or event, as well as the area in which an event is taking place.

In this hour and the next, we will work on a preliminary version of this application.

The Structure
Before we write a single line of code, we must decide exactly how the script will work.

How will the user navigate the environment? What screens will we include?

The project naturally divides itself into two environments. First, a members' space

that will be used to maintain club information and add new events to the diary.

Second, a users' space for browsing the database.

Figure 23.1 shows the structure of the application.

New members will join up from a page called join.php, where they can set a

 419

name/password pair. Assuming that the name they choose is not already taken,

they will be redirected to a form at updateclub.php where they can add information

about their club. Until this form is completed, members will not be able to add

events. After club data has

Figure 23.1: Application structure.

been added, the member will be sent to a members menu page (membersmenu.php)

from where all member utilities can be reached.

An existing member will begin at a login screen (login.php). After the name and

password have been checked, the member will be redirected straight to

membersmenu.php.

From the menu page, members will be able to add new events (updateevent.php)

and see a list of their currently set events (reviewevents.php). They will also be able

to change their club details at any time (updateclub.php).

All users will be able to view a list of events by month, year, type, and area from a

single PHP page, viewevents.php. They will also be able to view a list of clubs

according to location or type from viewclubs.php. Users will be able to click a club or

event name to see more detailed information on viewevent.php and viewclub.php,

respectively.

Designing the Database
We will create a database called organizer and add four tables: clubs, events, areas,

and types. We clearly need to keep data about clubs and events in separate tables

because one club will link to multiple events. We will build separate tables to define

event types and areas because this will make it easy to build pull-down menus for

searching and adding data. We will create the tables manually. First, the clubs table:

create table clubs (id INT NOT NULL AUTO_INCREMENT,

 PRIMARY KEY(id),

 name VARCHAR(50),

 type CHAR(3),

 area CHAR(3),

 420

 mail VARCHAR(50),

 description BLOB,

 login VARCHAR(8),

 password VARCHAR(8)

);

The member will add data for the name, mail, description, login, and password fields.

type and area will hold identifiers that will link to the types and areas tables,

respectively.

The events table will store information about every event belonging to each club:

create table events(id INT NOT NULL AUTO_INCREMENT,

 PRIMARY KEY(id),

 type CHAR(3),

 area CHAR(3),

 edate INT,

 ename VARCHAR(100),

 evenue VARCHAR(100),

 eaddress VARCHAR(255),

 ezip VARCHAR(20),

 edescription BLOB,

 eclub INT NOT NULL

);

Notice that this table, too, has type and area fields. A club may be based in the north

of the city but hold an event in the south. A social club might hold an educational

seminar or a political meeting. The eclub field will hold the ID of the club that owns

the event. We can use this to list all events belonging to a club or to access club data

from an event listing.

The types and areas fields are simple:

create table areas(id CHAR(3), area VARCHAR(30));

create table types(id CHAR(3), type VARCHAR(30));

The member will not be able to amend data in these tables. Instead, we will add our

own category information, using SQL INSERT statements, and the member will be

given these values as options to choose from:

INSERT INTO types (id, type) VALUES("COM", "Community");

Tables 23.1 and 23.2 list the data that we will insert.

Table 23.1: Data Added to the type Table

ID Types

MUS Music

FAM Family

 421

SOC Social

COM Community

Table 23.2: Data Added to the area Table

ID Areas

NOR North

SOU South

EAS East

WES West

Design Choices

You have already seen the choices that we have made in structuring this project. We

have opted to build a separate page per screen rather than a monolithic application

that serves different pages according to circumstances. This choice has both

advantages and disadvantages.

Building a dynamic environment that uses multiple pages can involve some

duplication of code structures and can make a project more difficult to maintain as

it grows. On the other hand, we will be able to hand on our completed prototype to

designers and page builders who can develop our pages almost as they would with

standard HTML pages.

The Members Environment

It's time at last to start coding! For the rest of this hour, we will be constructing the

members section of the application. It's a good idea to build this section first to

make it easy to start adding sample data. Before we can do this, however, we must

be able to create an account for ourselves.

join.php and dblib.inc

join.php will hold the form that allows the new member to submit a new username

and password. To test for login name duplications and to add the member data, we

must first open the database. This will be such a common need that it is a good idea

to create a function for this purpose, which we will store in a separate document.

This can then be added to every page we create using an include() statement. In

 422

fact, we will use this document, which we will call dblib.inc, to store an entire library

of functions that work with the database. This will keep our PHP pages clear of SQL

queries.

Keeping functions that talk to a database separate from your main code, can make

it easier to amend your scripts to work with different data storage applications. You

may have to rewrite the functions themselves at some point, but the calling code

should continue to work as expected.

Let's create the function that will connect to the database:

Listing 23.1: An Extract from dblib.inc

 1: $link;

 2: connectToDB();

 3: function connectToDB()

 4: {

 5: global $link;

 6: $link = mysql_connect("localhost", "harry", "elbomonkey");

 7: if (! $link)

 8: die("Couldn't connect to MySQL");

 9: mysql_select_db("organizer", $link)

10: or die ("Couldn't open organizer: ".mysql_error());

11: }

The connectToDB() function declares a global variable, $link, that will store the

database identifier returned by mysql_connect(). We have declared $link as global

so that other database query functions will have access to it. Not only do we connect

to the mysql daemon in the connectToDB() function, we also attempt to select the

organizer database. Because the success of these operations is crucial to the

working of the environment as a whole, we end execution if either mysql_connect()

or mysql_select_db() fails.

We will create a further library that all pages will share. This will be called clublib.inc

and will contain functions that help with session management and authentication.

We will be using the session functions to store an associative array called $session.

 423

In clublib.inc, then, we use session_start() to initiate or resume a session and

session_register() to associate our variable with it:

Listing 23.2: An Extract from clublib.inc

1: session_start();

2: session_register("session");

Remember that any PHP code in included files must be surrounded by PHP start

(<?php) and end tags (?>). It may seem needlessly confusing to store functionality

in separate files, but it will save us a lot of duplication across the many pages in this

project. We are now ready to create the join.php page. We do this in Listing 23.3.

Listing 23.3: join.php

 1: <?php

 2: include("dblib.inc");

 3: include("clublib.inc");

 4: $message="";

 5: if (isset($actionflag) && $actionflag=="join")

 6: {

 7: if (empty($form[login]) ||

 8: empty($form[password]) ||

 9: empty($form[password]))

10: $message .= "you must fill in all fields
\n";

11: if ($form[password] != $form[password2])

12: $message .= "Your passwords did not match
\n";

13: if (strlen($form[password]) > 8)

14: $message .= "Your password must be less than

15: 8 characters
\n";

16: if (strlen($form[login]) > 8)

17: $message .= "Your login must be less than

18: 8 characters
\n";

 424

19: if (getRow("clubs", "login", $form[login]))

20: $message .= "Login \"$form[login]\" already exists.

21: Try another
\n";

22: if ($message == "") // we found no errors

23: {

24: $id = newUser($form[login], $form[password]);

25: cleanMemberSession($id, $form[login], $form[password]);

26: header("Location: updateclub.php?".SID);

27: exit;

28: }

29: }

30: ?>

31: <html>

32: <head>

33: <title>Join!</title>

34: </head>

35:

36: <body>

37: <?php

38: include("publicnav.inc");

39: ?>

40: <p>

41: <h1>Join</h1>

42: <?php

43: if ($message != "")

44: {

45: print "$message<p>";

46: }

47: ?>

48: <p>

 425

49: <form action="<?php print $PHP_SELF;?>">

50: <input type="hidden" name="actionflag" value="join">

51: <input type="hidden" name="<?php print session_name() ?>"

52: value="<?php print session_id() ?>">

53: Login:

54: <input type="text" name="form[login]"

55: value="<?php print $form[login] ?>" maxlength=8>

56: </p>

57: <p>

58: Password:

59: <input type="password" name="form[password]" value="" maxlength=8>

60: </p>

61: <p>

62: Confirm password:

63: <input type="password" name="form[password2]" value="" maxlength=8>

64: </p>

65: <p>

66: <input type="submit" value="update">

67: </p>

68: </form>

69:

70: </body>

71: </html>

We first include() our library files, so we should instantly have a database

connection and an active session. We initialize a variable called $message. This

variable will be found on many pages in our project. It has a dual purpose. We will

fill it with error information when we test submitted data. This can then be written

to the browser. We can also use it as a flag to tell us whether problems have been

encountered. If $message remains an empty string, we can assume that all the

tests that we have performed have been successful.

 426

We test for the presence and contents of a variable called $actionflag. This is

another pattern that you will see repeating. We set a hidden field called actionflag in

every form we create and give it a relevant value. If the corresponding variable

$actionflag is present and filled with the expected value, then we can be sure that

the form has been submitted, and we can proceed to check the input. If the variable

is not present, we know that the member has arrived via a link or bookmark and is

not submitting data yet.

Let's skip to the HTML section for now. Within the BODY element, we first include()

yet another file. This will contain global navigation. It's a good idea to include

navigation from an early stage. It will make it easier to test the environment as we

go along. We will add navigation elements to an include file called publicnav.inc. For

now this will only contain navigation for the publicly available pages.

Listing 23.4: An Extract from publicnav.inc

1: <a href="viewclubs.php?<?php print SID ?>">Browse clubs |

2: <a href="viewevents.php?<?php print SID ?>">Browse events |

3: <a href="join.php?<?php print SID ?>">Join |

4: <a href="login.php?<?php print SID ?>">Login |

5: <a href="index.php?<?php print SID ?>">Home

By including the navigation elements in a separate file, we can update the look and

feel of the entire site's navigation with a single change.

After writing the title of the page, we test the $message variable. If it does not hold

an empty string, we write its contents to the browser. This is the mechanism by

which we can send feedback to the member if we can't work with his or her input.

The HTML form defines three visible fields. form[login], form[password], and

form[password2]. We use this strange naming technique because PHP will convert

these names, and their corresponding values, into a single associative array called

$form. This will help to protect us from namespace pollution. We will be keeping all

session variables in an array called $session, and all form variables in an array

called $form. This will help to protect us against clashes. It is a good idea to keep

your global variables to a minimum, to avoid confusion in projects of this size. We

will use a $form array for every script that contains a form.

 427

We also create one hidden element called actionflag, and another one that will store

the session name and variable. Throughout this project, we will always pass the

session ID from page to page, so that we will not lose clients who cannot or will not

use cookies.

 Tip If you are testing a session-enabled script, it is a good idea to disable

cookies on your browser first. You will then know whether you have

failed to pass the session ID from request to request.

Now that we have looked at the HTML form, we can examine the code we use to test

input. We check that the member has filled in all fields, that none of them contain

more than eight characters. We then call a new function called getRow(), this is one

of the functions that we include in the dblib.inc file. It requires a table name, field

name, and field value. It then uses these to attempt to find a corresponding row in

the database, returning it in an array.

Listing 23.5: An Extract from dblib.inc

1: function getRow($table, $fnm, $fval)

2: {

3: global $link;

4: $result = mysql_query("SELECT * FROM $table WHERE $fnm='$fval'",

$link);

5: if (! $result)

6: die ("getRow fatal error: ".mysql_error());

7: return mysql_fetch_array($result);

8: }

We pass the function the table name clubs, the field name login, and the value given

to us by the member in $form[login]. If mysql_fetch_array() returns a populated

array, we know that a member with this login already exists, so we set an error

message.

If the $message variable still contains an empty string, we can go ahead and create

our new member. There are two stages to this. First, we must update the database.

We create a new dblib.inc function called newUser() to handle this:

Listing 23.6: An Extract from dblib.inc

 428

1: function newUser($login, $pass)

2: {

3: global $link;

4: $result = mysql_query("INSERT INTO clubs (login, password)

5: VALUES('$login', '$pass')", $link);

6: return mysql_insert_id($link);

7: }

This function accepts login and password values. It uses these to insert a new row

into the clubs table. It uses mysql_insert_id() to return the automatically

incremented id field.

Now that we have a value for the member's ID, we can call another library function.

cleanMemberSession() lives in clublib.inc. It accepts an ID, a login name, and a

password, and stores these in the $session array. These values will now be available

to every session-enabled page the member visits. We will be able to use them to

authenticate the member on each screen.

Listing 23.7: An Extract from clublib.inc

1: function cleanMemberSession($id, $login, $pass)

2: {

3: global $session;

4: $session[id] = $id;

5: $session[login] = $login;

6: $session[password] = $pass;

7: $session[logged_in] = true;

8: }

As well as setting id, login, and password elements, we also set a flag element called

logged_in.

 429

Finally, in join.php, having updated the session and the database, we can send the

member on her way. We call the header() function, redirecting her browser to

updateclub.php where she must add more information about the club she is

registering.

You can see the output from join.php in Figure 23.2.

Figure 23.2: Output from join.php

updateclub.php

This screen performs the dual purpose of allowing a new member to add club

information and an established member to make changes to his or her data.

You can see updateclub.php in Listing 23.8.

Listing 23.8: updateclub.php

 1: <?php

 2: include("dblib.inc");

 3: include("clublib.inc");

 4: $club_row = checkUser();

 5: $message = "";

 6: if (isset($actionflag) && $actionflag=="update")

 7: {

 8: if (empty($form[name]))

 430

 9: $message .="Your club must have a name
\n";

10: if (! getRow("areas", "id", $form[area]))

11: $message .= "PANIC: That area code can't be found
";

12: if (! getRow("types", "id", $form[type]))

13: $message .= "PANIC: That type code can't be found
";

14: if ($message == "")

15: {

16: updateOrg($session[id], $form[name], $form[area],

17: $form[type], $form[mail], $form[description]);

18: header("Location: membersmenu.php?".SID);

19: exit;

20: }

21: }

22: else

23: {

24: $form = $club_row;

25: }

26: ?>

27: <html>

28: <head>

29: <title>Update your club listing</title>

30: </head>

31:

32: <body>

33: <?php

34: include("publicnav.inc");

35: ?>

36: <h1>Amend club information</h1>

37: <?php

38: if ($message != "")

 431

39: {

40: print "$message<p>";

41: }

42: ?>

43: <form action="<?php print $PHP_SELF;?>">

44: <input type="hidden" name="actionflag" value="update">

45: <input type="hidden" name="<?php print session_name() ?>"

46: value="<?php print session_id() ?>">

47: <p>

48: Club name:

49: <input type="text" name="form[name]"

50: value="<?php print stripslashes($form[name]) ?>">

51: </p>

52: <p>

53: Club area:

54: <select name="form[area]">

55: <?php writeOptionList("areas", $form[area]) ?>

56: </select>

57: </p>

58: <p>

59: Club type:

60: <select name="form[type]">

61: <?php writeOptionList("types", $form[type]) ?>

62: </select>

63: </p>

64: <p>

65: Contact e-mail:

66: <input type="text" name="form[mail]"

67: value="<?php print stripslashes($form[mail]) ?>">

68: </p>

 432

69: <p>

70: Club description:

71: <textarea name="form[description]" rows=5 cols=30 wrap="virtual">

72: <?php print stripslashes($form[description]) ?>

73: </textarea>

74: </p>

75: <p>

76: <input type="submit" value="update">

77: </p>

78: </form>

79: </body>

80: </html>

Once again, we include dblib.inc and clublib.inc, saving us from having to write code

to open the database and resume a session all over again. We call a new function

called checkUser(), which resides in the clublib.inc library. The function checks the

member's session data against the database.

Listing 23.9: An Extract from clublib.inc

 1: function checkUser()

 2: {

 3: global $session, $logged_in;

 4: $session[logged_in] = false;

 5: $club_row = getRow("clubs", "id", $session[id]);

 6: if (! $club_row ||

 7: $club_row[login] != $session[login] ||

 8: $club_row[password] != $session[password])

 9: {

10: header("Location: login.php");

11: exit;

12: }

 433

13: $session[logged_in] = true;

14: return $club_row;

15: }

checkUser() is relatively strict. It uses the $session[id] element array in conjunction

with getRow() to extract the relevant row from the database. It stores this

associative array in the variable $club_row and tests its login and password

elements against those stored in the $session variable. If these don't match, it

sends the user back to the login page login.php.

Why do we go to the expense of a database request for authentication? Could we not

simply check the logged_in element of the $session variable? This would be open to

abuse because a malicious user could simply add something like

session%5Blogged_in%5D=1&session%5Bid%5D=1

to a query string. PHP would transform this into a $session array made up of GET

parameters, which could fool a less vigorous test. A user could use a similar trick to

fool the test in checkUser(), but because we are testing the login and password

against the values in the database, the fake $session variable would have to contain

valid data to be accepted.

A byproduct of the test in checkUser() is the fact that it returns all data associated

with the club in question. Pages that need to authenticate a member can work with

this data.

When we call checkUser() in updateclub.php, the return value is stored in the

variable $club_row. Skipping ahead once again to the HTML body, we begin by

including the navigation file publicnav.inc once again. We have moved on a little,

however, and can extend this document to include members navigation elements as

well:

Listing 23.10: An Extract from publicnav.inc

 1: <p>

 2: <a href="viewclubs.php?<?php print SID ?>">Browse clubs |

 3: <a href="viewevents.php?<?php print SID ?>">Browse events |

 4: <a href="join.php?<?php print SID ?>">Join |

 434

 5: <a href="login.php?<?php print SID ?>">Login |

 6: <a href="index.php?<?php print SID ?>">Home

 7: </p>

 8: <?php

 9: if ($session[logged_in])

10: {

11: ?>

12: <p>

13: <A HREF="updateclub.php?<?php print SID ?>">Your details |

14: <A HREF="reviewevents.php?<?php print SID ?>">Your events |

15: <A HREF="updateevent.php?<?php print SID ?>">New event |

16: <A HREF="membersmenu.php?<?php print SID ?>">Members

home

17: </p>

18: <?

19: }

20: ?>

21: <hr>

If the $session[logged_in] flag is set to true, then links that should only be available

to members will also be printed. Notice that we include the SID constant in all our

links. This will ensure that session ID is passed from page to page, even if cookies

are disabled.

The form in updateclub.php is unremarkable. We include both actionflag and

session ID hidden elements. We provide text entry elements for the club's name,

description, and a contact email address. To produce the pul l-down menus for the

club area and type, however, we call a new function, writeOptionList(). This function

is stored in our database library, dblib.inc. It accepts the name of a table, (either

areas or types), and a string value.

Listing 23.11: An Extract from dblib.inc

 1: function writeOptionList($table, $id)

 435

 2: {

 3: global $link;

 4: $result = mysql_query("SELECT * FROM $table", $link);

 5: if (! $result)

 6: {

 7: print "failed to open $table<p>";

 8: return false;

 9: }

10: while ($a_row = mysql_fetch_row($result)){

11: print "<option value=\"$a_row[0]\"";

12: if ($id == $a_row[0])

13: print "SELECTED";

14: print ">$a_row[1]\n";

15: }

16: }

The function uses the $table parameter variable to select every row from either the

areas or types table. It then loops through each of the rows in the resultset, writing

an HTML OPTION element to the browser. If the second element in the array

returned by mysql_fetch_row() matches $id, the second parameter argument, the

string "SELECTED" is added to the element. This technique ensures that the correct

element in the pull-down remains selected if the form is represented.

The PHP code that checks the input ensures that the form[name] field has been

filled in. It also checks that form[area] and form[type] contain legal values. If the

$message variable contains an empty string, we know that our criteria for the

user-submitted data have been met. We pass the user input to a function called

updateOrg(), which will populate the relevant row of the clubs table. updateOrg()

requires a club's ID, in addition to values for the name, area, type, mail, and

description fields in the clubs table.

Listing 23.12: An Extract from dblib.inc

 1: function updateOrg($id, $name, $area, $type, $mail, $description)

 436

 2: {

 3: global $link;

 4: $query = "UPDATE clubs set name='$name', area='$area',

 5: type='$type', mail='$mail', description='$description'

 6: WHERE id='$id'";

 7: $result = mysql_query($query, $link);

 8: if (! $result)

 9: die ("updateOrg update error: ".mysql_error());

10: }

After the row has been updated, the member can be sent on to the member's menu

page, membersmenu.php.

If the member reached updateclub.php via a link or bookmark, the $actionflag

variable will not be set, and the testing and updating code will be skipped. There is

still work to be done, however. The $club_row associative array variable was

populated when we called checkUser(). It contains the field names and values for

the current club's row in the database. We assign this array to the $form variable,

thereby ensuring that the update form will be populated with the current

information for the club.

Figure 23.3 shows the output of Listing 23.8.

Figure 23.3: Output of Listing 23.8.

 437

membersmenu.php

membersmenu.php is the heart of the members area. Essentially a list of links, it

would eventually be populated by news and offers that might be interesting to

members. You can see this page in Listing 23.13.

Listing 23.13: membersmenu.php

 1: <?php

 2: include("dblib.inc");

 3: include("clublib.inc");

 4:

 5: $club_row = checkUser();

 6: checkClubData($club_row);

 7: ?>

 8:

 9: <html>

10: <head>

11: <title>Welcome</title>

12: </head>

13:

14: <body>

15: <?php

16: include("publicnav.inc");

17: ?>>Members menu</h1>

18:

19: <a href="updateclub.php?<?php print SID ?>">Review your club

details

20: <a href="reviewevents.php?<?php print SID ?>">Review your

events

21: <a href="updateevent.php?<?php print SID ?>">New event

22:

 438

23: </body>

24: </html>

There's one new feature on this page. After we call checkUser() to ensure that the

user is a member, we pass the array it returns to another function that we keep in

clublib.php. The checkClubData() function ensures that the member has already

created a club profile. We do not want members to create events unless they have

fully defined their club. The minimum we require is a club name.

Listing 23.14: An Extract from clublib.inc

1: function checkClubData($clubarray)

2: {

3: if (! isset($clubarray[name]))

4: {

5: header("Location: updateclub.php?".SID);

6: exit;

7: }

8: }

login.php

Before we move onto the pages that members can use to maintain their events, we

must look at login.php. This script enables a registered member to return to the

environment. You can see it in Listing 23.15.

Listing 23.15: login.php

 1: <?php

 2: include("dblib.inc");

 3: include("clublib.inc");

 4: $message="";

 5: if (isset($actionflag) && $actionflag == "login")

 439

 6: {

 7: if (empty($form[login]) || empty($form[password]))

 8: $message .= "you must fill in all fields
\n";

 9: if (! ($row_array =

10: checkPass($form[login], $form[password])))

11: $message .= "Incorrect password try again
\n";

12: if ($message == "") // we found no errors

13: {

14: cleanMemberSession($row_array[id], $row_array[login],

15: $row_array[password]);

16: header("Location: membersmenu.php?".SID);

17: }

18: }

19: ?<

20: <html>

21: <head>

22: <title>Login</title>

23: </head>

24: <body>

25: <?php

26: include("publicnav.inc");

27: ?>

28: <h1>Login</h1>

29: <?php

30: if ($message != "")

31: {

32: print "<p>$message</P>";

33: }

34: ?>

35: <p>

 440

36: <form action="<?php print $PHP_SELF;?>">

37: <input type="hidden" name="actionflag" value="login">

38: <input type="hidden" name="<?php print session_name() ?>"

39: value="<?php print session_id() ?>">

40: </p><p>

41: Login:

42: <input type="text" name="form[login]"

43: value="<?php print $form[login] ?>">

44: </p><p>

45: Password:

46: <input type="password" name="form[password]" value="">

47: </p><p>

48: <input type="submit" value="update">

49: </form>

50: </body>

51: </html>

The structure of this page should now be familiar. We use dblib.inc and clublib.inc to

initialize a database connection and resume a session.

If an $actionflag variable has been set, we test the form fields. We use a new

dblib.inc function to check the $form[login] and $form[password] elements.

Listing 23.16: An Extract from dblib.inc

 1: function checkPass($login, $password)

 2: {

 3: global $link;

 4: $result = mysql_query("SELECT id, login, password FROM clubs

 5: WHERE login='$login' and password='$password'",

 6: $link);

 7: if (! $result)

 441

 8: die ("checkPass fatal error: ".mysql_error());

 9: if (mysql_num_rows($result))

10: return mysql_fetch_array($result);

11: return false;

12: }

checkPass() accepts a login and password and sends a simple SELECT query to the

clubs table.

If no errors have been found, we call cleanMemberSession(), which initializes the

login, password, and id elements of the $session variable. We then redirect the

member to membersmenu.php

updateevent.php

Now that members can join or log in to our service and amend their club details, we

need to make it possible for them to create and edit events. You can see the whole

of updateevent.php in Listing 23.17.

Listing 23.17: updateevent.php

 1: <?php

 2: include("dblib.inc");

 3: include("clublib.inc");

 4: include("date.inc");

 5: $club_row = checkUser();

 6: checkClubData($club_row);

 7: $date = time();

 8: $message = "";

 9: if (! empty($event_id))

 10: $event_row = getRow("events", "id", $event_id);

 11: else

 12: $event_id = false;

 442

 13: if (isset($actionflag) && $actionflag=="update_event")

 14: {

 15: if (empty($form[ename]))

 16: $message .="The venue must have a name
\n";

 17: if (! getRow("areas", "id", $form[area]))

 18: $message .= "PANIC: That area code can't be found
";

 19: if (! getRow("types", "id", $form[type]))

 20: $message .= "PANIC: That type code can't be found
";

 21: foreach (array("months", "years", "days", "minutes")

 22: as $date_unit)

 23: {

 24: if (! isset($form[$date_unit]))

 25: {

 26: $message .= "PANIC: Can't make sense of that date";

 27: break;

 28: }

 29: }

 30: $date = mktime($form[hours], $form[minutes], 0, $form[months],

 31: $form[days], $form[years]);

 32: if ($date < time())

 33: $message .= "You've chosen a date in the past!";

 34: if ($message == "")

 35: {

 36: insertEvent($form[ename], $form[evenue], $form[area],

 37: $form[type], $form[eaddress], $form[ezip],

 38: $form[edescription], $session[id], $date,

 39: $event_id);

 40: header("Location: reviewevents.php?".SID);

 41: }

 42: }

 443

 43: elseif ($event_id)

 44: {

 45: //foreach($event_row as $key=>$value)

 46: // $form[$key] = $value;

 47: $form = $event_row;

 48: $date = $event_row[edate];

 49: }

 50: else

 51: {

 52: $form[area] = $club_row[area];

 53: $form[type] = $club_row[type];

 54: }

 55: ?>

 56: <html>

 57: <head>

 58: <title>Add/amend event</title>

 59: </head>

 60: <body>

 61: <?php

 62: include("publicnav.inc");

 63: ?>

 64: <h1>Amend event</h1>

 65: <?php

 66: if ($message != "")

 67: {

 68: print "$message";

 69: }

 70: ?>

 71: <p>

 72: <form action="<?php print $PHP_SELF;?>">

 444

 73: <input type="hidden" name="actionflag" value="update_event">

 74: <input type="hidden" name="<?php print session_name() ?>"

 75: value="<?php print session_id() ?>">

 76: <input type="hidden" name="event_id"

 77: value="<?php print $event_id ?>">

 78: Event Name:

 79: <input type="text" name="form[ename]"

 80: value="<?php print stripslashes($form[ename]) ?>">

 81: </p>

 82: <p>

 83: Date and time:

 84: <select name="form[months]">

 85: <?php writeMonthOptions($date) ?>

 86: </select>

 87: <select name="form[days]">

 88: <?php writeDayOptions($date) ?>

 89: </select>

 90: <select name="form[years]">

 91: <?php writeYearOptions($date) ?>

 92: </select>

 93: <SELECT NAME="form[hours]">

 94: <? writeHourOptions($date) ?>

 95: </SELECT>

 96: <SELECT NAME="form[minutes]">

 97: <? writeMinuteOptions($date) ?>

 98: </SELECT>

 99: </p>

100: <p>

101: Event area:

102: <select name="form[area]">

 445

103: <?php writeOptionList("areas", $form[area]) ?>

104: </select>

105: </p>

106: <p>

107: Event type:

108: <select name="form[type]">

109: <?php writeOptionList("types", $form[type]) ?>

110: </select>

111: </p>

112: <p>

113: Describe the event:

114: <textarea name="form[edescription]" wrap="virtual" rows=5 cols=30>

115: <?php print stripslashes($form[edescription]) ?>

116: </textarea>

117: </p>

118: <p>

119: Venue name:

120: <input type="text" name="form[evenue]"

121: value="<?php print stripslashes($form[evenue]) ?>">

122: </p>

123: <p>

124: Venue address:

125: <textarea name="form[eaddress]" wrap="virtual" rows=5 cols=30>

126: <?php print stripslashes($form[eaddress]) ?>

127: </textarea>

128: </p>

129: <p>

130: Venue zip code:

131: <input type="text" name="form[ezip]"

132: value="<?php print stripslashes($form[ezip]) ?>">

 446

133: </p>

134: <p>

135: <input type="submit" value="update">

136: </p>

137: </form>

138: </body>

139: </html>

This page creates a form that matches the field names in the events table. As usual,

we need to test these values and update the database. However, we must also

retrieve a listing if the form is to amend an event rather than add a new one. The

$event_id variable will be passed to this page in a query string if we are to work with

an existing listing. If the $event_id variable is not empty, we use getRow() to

populate a variable called $event_row with the event's data. If the $event_id

variable is absent or empty, we initialize it to false.

If the form has been submitted, we test that all essential data has been provided.

We also test that the date and time chosen have not already passed. In so doing, we

set a global variable called $date to a time stamp based on the previous input.

If the submitted data checks out to our satisfaction, we call another dblib.inc

function calledinsertEvent(). As you can see, this requires all the fields in the events

table. The final field required is an ID for the event. This will be used by insertEvent()

to determine whether it should be updating or inserting data. Notice that the ID of

the club is stored in the $session[id] variable. This will be placed in the eclub field of

the events table. We are using a time stamp to store date information in the

database.

Listing 23.18: An Extract from dblib.inc

 1: function insertEvent($name, $venue, $area, $type, $address,

 2: $zip, $desc, $club_id, $timestamp, $event_id)

 3: {

 4: global $link;

 5: if (! $event_id)

 447

 6: {

 7: $query = "INSERT INTO events (ename, evenue, area, type,

 8: eaddress, ezip, edescription, eclub, edate)

 9: VALUES('$name', '$venue', '$area', '$type', '$address',

10: '$zip', '$desc', '$club_id', '$timestamp')";

11: }

12: else

13: {

14: $query = "UPDATE events SET ename='$name', evenue='$venue',

15: area='$area', type='$type', eaddress='$address',

16: ezip='$zip', edescription='$desc', eclub='$club_id',

17: edate='$timestamp' WHERE id='$event_id'";

18: }

19: $result = mysql_query($query, $link);

20: if (! $result)

21: die ("insertEvent error: ".mysql_error());

22: }

As you can see, the insertEvent() function tests the $event_id argument. If this

resolves to false, then an INSERT statement will be built. Otherwise, $event_id will

be used as the condition in an UPDATE statement.

After the database has been updated, we redirect the member to reviewevents.php

where she can see her entire schedule.

If the member has not yet submitted data, we will have skipped the data check and

database amendment code. If we have an $event_id variable, however, we have

cached event data from the database that we need to present in our form. We do

this by assigning $event_row to the $form variable. We also set the global $date

variable to the edate element of $event_row.

If the form has not been submitted and there is no $event_id, we set the $form[area]

and $form[type] elements to their equivalents for the club data we have stored in

$club_row. Remember that $club_row contains a row from the clubs table. This

 448

causes the respective pull-down menus to default to the values the member set for

her club's area and type.

Within the HTML form, the only code of any note is the code that writes the

pull-down menus for event date and time. These menus would be easy enough to

hard-code, but we need them to automatically select either the current time, the

time that the member last chose, or the time stored in the events table. We have

already stored this in the $date variable. This is initialized to the current time stamp

at the beginning of the script. If user input is detected, we build a new time stamp

based on these choices and assign it to $date. Otherwise, if we are amending an

existing event, we populate $date with the value from the edate field in the events

table.

Each of the pull-downs passes the time stamp in $date to a relevant function stored

in yet another library file called date.inc. You can see these in Listing 23.19.

Listing 23.19: date.inc

 1: <?php

 2: function writeMonthOptions($d)

 3: {

 4: $d_array = getDate($d);

 5: $months = array("Jan","Feb","Mar","Apr","May","Jun",

 6: "Jul","Aug","Sep","Oct","Nov","Dec");

 7: foreach ($months as $key=>$value)

 8: {

 9: print "<OPTION VALUE=\"".($key+1)."\"";

10: print (($d_array[mon] == ($key+1))?"SELECTED":"");

11: print ">$value\n";

12: }

13: }

14: function writeDayOptions($d)

15: {

16: $d_array = getDate($d);

17: for ($x = 1; $x<=31; $x++)

 449

18: {

19: print "<OPTION VALUE=\"$x\"";

20: print (($d_array[mday] == $x)?"SELECTED":"");

21: print ">$x\n";

22: }

23: }

24: function writeYearOptions($d)

25: {

26: $d_array = getDate($d);

27: $now_array = getDate(time());

28: for ($x = $now_array[year]; $x <= ($now_array[year]+5); $x++)

29: {

30: print "<OPTION VALUE=\"$x\"";

31: print (($d_array[year] == $x)?"SELECTED":"");

32: print ">$x\n";

33: }

34: }

35: function writeHourOptions($d)

36: {

37: $d_array = getDate($d);

38: for ($x = 0; $x< 24; $x++)

39: {

40: print "<OPTION VALUE=\"$x\"";

41: print (($d_array[hours] == $x)?"SELECTED":"");

42: print ">".sprintf("%'02d",$x)."\n";

43: }

44: }

45: function writeMinuteOptions($d)

46: {

47: $d_array = getDate($d);

 450

48: for ($x = 0; $x<= 59; $x++)

49: {

50: print "<OPTION VALUE=\"$x\"";

51: print (($d_array[minutes] == $x)?"SELECTED":"");

52: print ">".sprintf("%'02d",$x)."\n";

53: }

54: }

55: ?>

All these functions accept a time stamp and write a list of HTML OPTION tags. They

use getDate() to acquire an index for the relevant portion of the date stamp (year,

month, day of month, hour, minute). They can then compare this number with each

of the numbers within their range (1 to 31 for months, or 0 to 59 for minutes). If a

match is found, they add the string SELECTED to the OPTION element that they

write to the browser.

Figure 23.4 shows the output from Listing 23.17.

reviewevents.php

Finally, we must provide members with a way of reviewing all the events they have

set up. They should see a list of all events and be able to edit or delete any one of

them.

reviewevents.php is relatively simple. You can see it in Listing 23.20.

 451

Figure 23.4: Output of Listing 23.17.

Listing 23.20: reviewevents.php

 1: <?php

 2: include("dblib.inc");

 3: include("clublib.inc");

 4: $club_row = checkUser();

 5: checkClubData($club_row);

 6: function writeEvents()

 7: {

 8: global $club_row;

 9: $events = getEvents($club_row[id]);

10: if (! $events)

11: {

12: print "You have no events in your schedule<P>";

13: return;

14: }

15: print "<table border=1>\n";

16: print "<td>Date</td>\n<td>Name</td>\n

17: <td> </td>\n";

18: foreach ($events as $row)

 452

19: {

20: print "<tr>\n";

21: print "<td>".date("j M Y H.i", $row[edate])."</td>\n";

22: print "<td>".

23: html($row[ename])."</td>\n";

24: print "<td><a href=\"$GLOBALS[PHP_SELF]?event_id=$row[id]";

25: print "&actionflag=deleteEvent&".SID."\"";

26: print "onClick=\"return window.confirm('Are you sure you

27: want to delete this item')\">";

28: print "delete
</td>\n";

29: print "</tr>\n";

30: }

31: print "</table>\n";

32: }

33: $message="";

34: if (isset($actionflag) &&

35: $actionflag == "deleteEvent" && isset($event_id))

36: {

37: deleteEvent($event_id);

38: $message .= "That event is now history!
";

39: }

40: ?>

41: <html>

42: <head>

43: <title>Review events</title>

44: </head>

45: <body>

46: <?php

47: include("publicnav.inc");

48: ?>

 453

49: <h1>Review event schedule</h1>

50: <?php

51: if ($message != "")

52: {

53: print "$message";

54: }

55: ?>

56:

57: <?php

58: writeEvents();

59: ?>

60: </body>

61: </html>

Having used dblib.inc to start the database connection and clublib.inc functions to

resume the session and refuse access to unregistered users, we create a function

called writeEvents(). This can be called from anywhere in the body of the HTML and

directly outputs event information to the browser. We already have club information

stored in $club_row, which contains the information returned by checkUser(). We

can use the club ID stored in $club_row[id] as the key to unlock all the events

associated with the member's club. To do this, we use a dblib.inc function called

getEvents(). We will cover this function in more detail in the next hour. However, it

accepts a club ID and returns a multidimensional array containing every event row

associated with the club.

We store the return value from getEvents() in a variable called $events. In fact, we

are retrieving more information than we need, but the getEvents() function is

flexible, so we should use it unless we experience performance problems with our

script. If the value contained in $events resolves to false, we print a message to the

browser and end the function. Otherwise, we build an HTML table. Looping through

the $events array, we print some of the elements from each of its subarrays.

We output a formatted date by passing the edate element of each subarray to the

date() function. We also create an HTML link using each found event's id and ename

 454

fields. The id field is used with the SID constant to create a query string that can be

passed to updateevent.php and then used to retrieve the event for editing. Finally,

within our loop, we create a link for each element that points back to the current

page. For this, we construct a query string that combines the event's ID and an

actionflag parameter with the value deleteEvent. This will be used to delete the

given event, so we also build a JavaScript event handler that will prevent the link

from activating if the member changes her mind.

Having created the writeEvents() function, we must handle the possibility that the

member has chosen to delete an event. We can do this by testing the $actionflag

and $event_id variables. If these check out, we call a dblib.inc function called

deleteEvent() passing it the $event_id variable.

Listing 23.21: An Extract from dblib.inc

1: function deleteEvent($id)

2: {

3: global $link;

4: $query = "DELETE FROM events WHERE id='$id'";

5: $result = mysql_query($query, $link);

6: if (! $result)

7: die ("deleteEvent fatal error: ".mysql_error());

8: return (mysql_affected_rows($link));

9: }

You can see sample output from reviewevents.php in Figure 23.5.

 455

Figure 23.5: Output of reviewevents.php

Summary

We now have a complete working members environment for our events script. By

putting as much code as possible into libraries, we have made it possible for Web

designers to work effectively around our code. We have used the header() function

to move the user on to new pages when input is acceptable. We have used session

functions to store login information and database queries to authenticate our

member with every request.

In the next hour, we will use similar techniques to build the public face of our

environment.

Q&A

Q I find projects spread across multiple pages difficult to visualize and

control. Is there a secret?

A We have used a model based on a single script for most examples in this book.

When a project grows beyond a single script, you need to think of the entire

environment as a single application. Individual pages are just points of interaction

with the user. Keep any code used by more than one page in a function in a library

file.

If you would prefer to create a more centralized script, you could create a single

page that contains only basic HTML templating. All other elements can then be

 456

generated dynamically by your script. You will need to pass an action flag of some

kind to the script for every request so that the correct output is generated. This can

make your code much neater and avoids the need for the less than elegant Location

header solution. On the other hand, it will also involve embedding much more HTML

in your PHP code.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

What PHP function do we use to make our connection to the MySQL database

server?

What PHP function do we use to initiate or resume a session?

Which function do we use to include library files in our project's pages?

What PHP function do we use to send SQL queries to the MySQL database?

What constant do we use to add a session ID to an HTML link?

How do we move the user on to a new page?

What function do we use to format date information?

Activity

Review the code introduced in this hour. Are there any techniques or issues that

might have relevance for your own projects?

 457

Hour 24: An Example (Part 2)

Overview

In Hour 23, "An Example (Part 1)," we built an environment that allows users to

subscribe to a service and to add club and event information to it. Now we will create

the scripts necessary to allow the general user browse this information.

In this hour, you will learn

How to create functions that extract data from multiple tables with a single

request

How to create functions that vary the structure of a SQL query according to the

parameters that they are passed

How to save user search options using session functions

How to prepare plain text data for presentation in an HTML environment

The Events Diary Public Screens

Now that members can register their clubs and events with our database, we must

build screens that will allow the general user to access this information. These

screens will enable the user to browse rather than search for information, although

it wouldn't be difficult to add further functionality.

In this section, we will build four screens that will enable a user to see listings that

match his area or interest for any given month.

viewevents.php

The viewevents.php screen allows the user to browse entered events. It is similar in

some ways to the reviewevents.php screen covered in the preceding hour but allows

the user greater range and flexibility in viewing, if not editing, data. You can see the

code for this screen in Listing 24.1

Listing 24.1: viewevents.php

 1: <?php

 458

 2: include("dblib.inc");

 3: include("date.inc");

 4: include("clublib.inc");

 5:

 6: if (isset($actionflag) && $actionflag == "snowEvents")

 7: $session[viewevents] = $form;

 8: elseif ($session[viewevents])

 9: $form = $session[viewevents];

10: else

11: {

12: $d_array = getDate(time());

13: $session[viewevents][area] = "ANY";

14: $session[viewevents][type] = "ANY";

15: $session[viewevents][months] = $d_array[mon];

16: $session[viewevents][years] = $d_array[year];

17: }

18:

19: $range = getDateRange($session[viewevents][months],

20: $session[viewevents][years]);

21: function displayEvents()

22: {

23: global $range, $session;

24:

25: $events = getEvents(0, $range, $session[viewevents][area],

26: $session[viewevents][type]);

27: if (! $events)

28: {

29: print "No events yet for this combination<p>";

30: return;

31: }

 459

32: print "<table border=1>\n";

33: print "<td>Date</td>\n";

34: print "<td>Event</td>\n";

35: print "<td>Club</td>\n";

36: print "<td>Area</td>\n";

37: print "<td>Type</td>\n";

38: foreach ($events as $row)

39: {

40: print "<tr>\n";

41: print "<td>".date("j M Y H.i", $row[edate])."</td>\n";

42: print "<td>".

43: html($row[ename])."</td>\n";

44: print "<td>".

45: html($row[name])."</td>\n";

46: print "<td>$row[areaname]</td>\n";

47: print "<td>$row[typename]</td>\n";

48: print "</tr>\n";

49: }

50: print "</table>\n";

51: }

52: ?>

53:

54: <html>

55: <head>

56: <title>View events</title>

57: </head>

58: <body>

59: <?php

60: include("publicnav.inc");

61: ?>

 460

62: <h1>View Events</h1>

63: <p>

64: <form action="<?php print $PHP_SELF;?>">

65: <input type="hidden" name="actionflag" value="showEvents">

66: <input type="hidden" name="<?php print session_name() ?>"

67: value="<?php print session_id() ?>">

68: <select name=form[months]>

69: <?php writeMonthOptions($range[0]); ?>

70: </select>

71:

72: <select name=form[years]>

73: <?php writeYearOptions($range[0]); ?>

74: </select>

75:

76: <select name=form[area]>

77: <option value="ANY">Any Area

78: <?php writeOptionList("areas", $form[area]) ?>

79: </select>

80:

81: <select name=form[type]>

82: <option value="ANY">Any type of event

83: <?php writeOptionList("types", $form[type]) ?>

84: </select>

85:

86: <input type = "submit" value="Change">

87: </form>

88: </p>

89:

90: <?php

91: displayEvents();

 461

92: ?>

93:

94: </body>

95: </html>

We begin the code by including the library files dblib.inc, date.inc, and clublib.inc. As

well as giving access to the functions contained in these files, including dblib.inc and

clublib.inc ensures that we open a database connection and that we start or resume

a session.

We then check whether the user has submitted a form on the page by testing a

variable called $actionflag. The equivalent field actionflag is embedded as a hidden

variable in the page's form. If the user has submitted a form, her choices must take

precedence over any options we have previously saved. In the preceding hour, you

saw how we registered an associative array variable with our user session to store

login details. In this hour, we will add new elements to the same array that will keep

track of the user's preferences.

The $session variable was registered with the user session when we included the

clublib.php file.

session_start();

session_register("session");

We now turn the $session variable into a multidimensional array by assigning

associative array elements to an element called $session[viewevents]. In doing this,

we keep option variables categorized as belonging only to this screen. The options

that the user can choose on this page are area, type, months, and years. We assign

the form choices that the user has made to $session[viewevents] elements of the

same name.

If the user has not submitted the form on this page, she might have done so in the

past. In which case, the $session[viewevents] array will be set, but the $actionflag

variable will not. If so, we set the $form array to the same values. This will ensure

that the form shows the correct settings.

If the user has not submitted the screen's form and the $session[viewevents]

element is empty, then we must construct the array based on default values. We

use the getDate() function to build an array of date indices. This array is used to set

 462

the $session[viewevents][months] element to the current month index and the

$session[viewevents][years] to the current year.

We now know that the $session[viewevents][months] and

$session[viewevents][years] elements contain the correct month and year values,

whether they derive from form submission, a user session, or the default of the

current date. We pass these values to a new function in date.inc called

getDateRange(). This function accepts values for month and year and returns an

array of two time stamps, marking the beginning and end of the month.

Listing 24.2: An Extract from date.inc

1: function getDateRange($mon, $year)

2: {

3: $start = mktime(0, 0, 0, $mon, 1, $year);

4: $end = mktime(0, 0, 0, $mon+1, 1, $year);

5: $end--;

6: return array($start, $end);

7: }

The array returned by this function is stored in the global variable $range.

We create a function called displayEvents() that will write the chosen event

summaries to the browser. This will be called from the body of the HTML document.

To get an array of event summaries, we call the getEvents() function, which is

stored in the dblib.inc file we included earlier. We encountered this function in the

preceding hour, but exploited little of its flexibility.

Listing 24.3: An Extract from dlib.inc

 1: function getEvents($club_id=0, $range=0, $area=0, $type=0)

 2: {

 3: global $link;

 4: $query = "SELECT clubs.name, events.*, areas.area as areaname,

 5: types.type as typename ";

 6: $query .= "FROM clubs, events, areas, types WHERE ";

 463

 7: $query .= "clubs.id=events.eclub

 8: AND events.area=areas.id

 9: AND events.type=types.id ";

10: if (! empty($club_id) && $club_id !="ANY")

11: $query .= "AND events.eclub='$club_id' ";

12: if (! empty($range))

13: $query .= "AND events.edate >= '$range[0]' AND

14: events.edate <='$range[1]' ";

15: if (! empty($area) && $area != "ANY")

16: $query .= "AND events.area='$area' ";

17: if (! empty($type) && $type != "ANY")

18: $query .= "AND events.type='$type' ";

19: $query .= "ORDER BY events.edate";

20: $result = mysql_query($query, $link);

21: if (! $result)

22: die ("getIDevents fatal error: ".mysql_error());

23: $ret = array();

24: while ($row = mysql_fetch_array($result))

25: array_push($ret, $row);

26: return $ret;

27: }

Although this function is called getEvents(), it gets a lot more than that. As you can

see, it accepts four arguments: a club ID, a date range in the form of an array of two

time stamps, an area code, and a type code. All these arguments are optional and

could be replaced by either 0 or false if you don't want them to form part of a SQL

query.

The bulk of the function dynamically builds a SQL query based on the arguments

passed to it. The core query joins all the tables in the database, ensuring that the

club name, area name (as opposed to its code), and type name will be included in

the resultset.

 464

 $query = "SELECT clubs.name, events.*, areas.area as areaname,

 types.type as typename ";

 $query .= "FROM clubs, events, areas, types WHERE ";

 $query .= "clubs.id=events.eclub

 AND events.area=areas.id

 AND events.type=types.id ";

Thereafter, additional conditions are added to the query depending on whether the

corresponding function arguments are set to empty values. The $type and $area

parameter variables will also be ignored if they contain the string "ANY".

In practice, this means that the more arguments this function receives, the

narrower the resultset it returns. Given no arguments, it will return every event in

the events table. Given a $club_id argument, it will only return events associated

with a particular club. Given a $range array, it will only return events whose time

stamps fall within that period, and so on.

Finally, the query is submitted and a multidimensional array containing the resultset

returned.

Having acquired this array as a result of a call to getEvents(), we only need to loop

through it. We use each edate field to format a date in conjunction with the date()

function. We then build a link to viewevent.php, which will provide more information

about the event. For this, we construct a query string containing the event's ID and

the SID constant. In this loop, we also create an HTML hyperlink to viewclub.php,

creating a query string that contains the club ID for the event and the SID constant.

Finally, we print the names of the event's type and area.

You may have noticed in the preceding hour, that we used a function called html()

when we output member event data in summary form. As we loop through event

data in the writeEvents() function, we call html() again. This function is user-defined

and lives in the clublib.inc library. It accepts a string and returns a transformed

version that's suitable for printing to the browser. Special characters are converted

to HTML entities, and newlines have BR tags added to them.

Listing 24.4: An Extract from clublib.inc

 1: function html($str)

 2: {

 465

 3: if (is_array($str))

 4: {

 5: foreach ($str as $key=>$val)

 6: $str[$key] = htmlstr($val);

 7: return $str;

 8: }

 9: return htmlstr($str);

10: }

11: function htmlstr($str)

12: {

13: $str = htmlspecialchars($str);

14: $str = nl2br($str);

15: return $str;

16: }

As you can see, this is not one but two functions. html() accepts either a string or an

array. If the parameter variable contains an array, we loop through it, converting

each value. Otherwise, the conversion is applied directly to the parameter variable.

The actual conversion is affected in another function htmlstr(), which applies two

built-in functions to the given string. htmlspecialcharacters() converts any

character that might not display well in an HTML environment to its HTML entity

equivalent. nl2br() adds BR tags to the string where appropriate.

Having set default data and created a function to output event information, all that

is left is to build a form to allow the user to choose how she wants to browse the

events.

The user choice form is easy to build using the functions explored in the preceding

hour, which dynamically output HTML OPTION elements.

Figure 24.1 shows sample output from viewevents.php.

 466

Figure 24.1: Output from viewevents.php.

viewclubs.php

The user might want to view the database according to the clubs it contains rather

than its events, narrowing the found set according to a club's type and area. The

viewclubs.php screen allows her to do this. You can see this script in Listing 24.5.

Listing 24.5: viewclubs.php

 1: <?php

 2: include("dblib.inc");

 3: include("date.inc");

 4: include("clublib.inc");

 5: if (isset($actionflag) && $actionflag == "showClubs")

 6: $session[viewclubs] = $form;

 7: elseif ($session[viewclubs])

 8: $form = $session[viewclubs];

 9: else

10: {

11: $session[viewclubs][area] = "ANY";

12: $session[viewclubs][type] = "ANY";

13: }

 467

14: function displayClubs()

15: {

16: global $session;

17: $clubs = getClubs($session[viewclubs][area],

18: $session[viewclubs][type]);

19: if (! $clubs)

20: {

21: print "No clubs yet that fit these conditions<p>\n";

22: return;

23: }

24: print "<table border=1>\n";

25: print "<td>Club</td>\n";

26: print "<td>Area</td>\n";

27: print "<td>Type</td>\n";

28: foreach ($clubs as $row)

29: {

30: print "<tr>\n";

31: print "<td>".

32: html($row[name])."</td>\n";

33: print "<td>$row[areaname]</td>\n";

34: print "<td>$row[typename]</td>\n";

35: print "</tr>\n";

36: }

37: print "</table>\n";

38: }

39: ?>

40: <html>

41: <head>

42: <title>View clubs</title>

43: </head>

 468

44: <body>

45: <?php

46: include("publicnav.inc");

47: ?>

48: <P>

49: <h1>View Clubs</h1>

50: <p>

51: <form action="<?php print $PHP_SELF;?>">

52: <input type="hidden" name="actionflag" value="showClubs">

53: <input type="hidden" name="<?php print session_name() ?>"

54: value="<?php print session_id() ?>">

55: <select name=form[area]>

56: <option value="ANY">Any Area

57: <?php writeOptionList("areas", $form[area]) ?>

58: </select>

59: <select name=form[type]>

60: <option value="ANY">Any type of club

61: <?php writeOptionList("types", $form[type]) ?>

62: </select>

63: <input type = "submit" value="Change">

64: </form>

65: </p>

66: <?php

67: displayClubs();

68: ?>

69: </body>

70: </html>

As you can see, this script is similar in structure and logic to the previous example.

We store session variables for this page in $session[viewclubs]. If the user has

 469

submitted the page's form, we update the session variables. If the user has not

submitted the form but session variables are available, we assign

$session[viewclubs] to the $form variable. If all else fails, we populate the

$session[viewclubs] array with default values.

We create a function called displayClubs(). Within this function, we call a new

dblib.inc function called getClubs(). This function will optionally accept values for

either the type or area fields in the clubs table:

Listing 24.6: An Extract from dlib.inc

 1: function getClubs($area="", $type="")

 2: {

 3: global $link;

 4: $query = "SELECT clubs.*, areas.area as areaname,

 5: types.type as typename ";

 6: $query .= "FROM clubs, areas, types WHERE ";

 7: $query .= "clubs.area=areas.id AND clubs.type=types.id ";

 8: if ($area != "ANY" && ! empty($area))

 9: $query .= "AND clubs.area='$area' ";

10: if ($type != "ANY" && ! empty($type))

11: $query .= "AND clubs.type='$type' ";

12: $query .= "ORDER BY clubs.area, clubs.type, clubs.name";

13: $result = mysql_query($query, $link);

14: if (! $result)

15: die ("getIDevents fatal error: ".mysql_error());

16: $ret = array();

17: while ($row = mysql_fetch_array($result))

18: array_push($ret, $row);

19: return $ret;

20: }21:

 470

getClubs() builds a dynamic SQL query based on the arguments it is passed. By

default, it joins the clubs, areas, and types tables. If it is passed anything other than

an empty string, or the string "ANY" for its $type and $area arguments, it will

further narrow the WHERE condition according to these values. Once again, it will

return a multidimensional array.

We loop through the array returned by getClubs() writing name, areaname, and

typename fields to the browser. As before, the club name forms part of a hyperlink

pointing to viewclub.php.

viewclub.php

The viewclub.php screen displays all information associated with a club. It can be

reached via hyperlinks in either viewevents.php or viewclubs.php. In terms of its

code, it combines the logic and many of the functions that you have seen in previous

examples. You can see the code for this screen in Listing 24.7.

Listing 24.7: viewclub.php

 1: <?php

 2: include("dblib.inc");

 3: include("clublib.inc");

 4: if (! isset($club_id))

 5: header("Location: viewclubs.php?".SID);

 6: $club = getClubJoined($club_id);

 7: $club = html($club);

 8: if ($club[mail] != "")

 9: $club[mail] = "$club[mail]";

10: function displayEvents()

11: {

12: global $club_id;

13: $events = getEvents($club_id);

14: if (! $events)

15: {

16: print "No events yet for this club<P>";

 471

17: return;

18: }

19: print "<table border=1>\n";

20: print "<td>Date</td>\n";

21: print "<td>Event</td>\n";

22: print "<td>Area</td>\n";

23: print "<td>Type</td>\n";

24: foreach ($events as $row)

25: {

26: print "<tr>\n";

27: print "<td>".date("j M Y H.i", $row[edate])."</td>\n";

28: print "<td>".

29: html($row[ename])."</td>\n";

30: print "<td>$row[areaname]</td>\n";

31: print "<td>$row[typename]</td>\n";

32: print "</tr>\n";

33: }

34: print "</table>\n";

35: }

36: ?>

37: <html>

38: <head>

39: <title>View clubs</title>

40: </head>

41: <body>

42: <?php

43: include("publicnav.inc");

44: ?>

45: <p>

46: <h1>View club details</h1>

 472

47: <h4><?php print $club[name] ?></h4>

48: <p>

49: Area: <?php print $club[areaname] ?>

50:

51: Type: <?php print $club[typename] ?>

52:

53: Mail: <?php print $club[mail] ?>

54: </p>

55: Description:

56: <?php print $club[description] ?>

57: <hr>

58: <?php

59: displayEvents();

60: ?>

61: </body>

62: </html>

This script requires a $club_id parameter. We test for this and return the user to the

viewclubs.php screen if we don't find it. To get club information, we call the dblib.inc

function getClubJoined(). This accepts a club ID and returns an array:

Listing 24.8: An Extract from dlib.inc

 1: function getClubJoined($id)

 2: {

 3: global $link;

 4: $query = "SELECT clubs.*, areas.area as areaname, types.type as

typename

";

 5: $query .= "FROM clubs, events, areas, types WHERE ";

 6: $query .= "clubs.area=areas.id

 7: AND clubs.type=types.id

 473

 8: AND clubs.id='$id'";

 9: $result = mysql_query($query, $link);

10: if (! $result)

11: die ("getClubJoined fatal error: ".mysql_error());

12: return mysql_fetch_array($result);

13: }

We call this function rather than getRow() (which could also return club data)

because the SQL query it builds includes the names associated with the area and

type fields. It does this by performing a join between the clubs, areas, and types

tables producing additional elements in the return array called areaname and

typename, respectively.

We store the array returned by getClubJoined() in a variable called $club. The $club

array is written to the browser in the body of the document. We also define a

function called displayEvents(), which acquires a list of events associated with the

club by passing the $club_id variable to the getEvents() function.

Figure 24.2 shows typical output from viewclub.php.

viewevent.php

viewevent.php is the final screen in our script. It provides complete information

about any individual event and can be reached via hyperlinks from any public pages

that list event summaries. You can see the code for this page in Listing 24.9.

Listing 24.9: viewevent.php

 1: <?php

 2: include("dblib.inc");

 3: include("clublib.inc");

 4: if (! isset($event_id))

 5: header("Location: viewevents.php?".SID);

 6: $event = getEvent($event_id);

 7: html($event);

 474

 8: ?>

 9: <html>

10: <head>

11: <title>View event details</title>

12: </head>

13: <body>

14: <?php

15: include("publicnav.inc");

16: ?>

17: <P>

18: <h1>View event details</h1>

19: <h4><?php print $event[ename] ?></h4>

20: <p>

21: Club:

22:

23: <?php print "

24: $event[clubname]"

25: ?>

26:

27:

28: Area: <?php print $event[areaname] ?>

29:

30: Type: <?php print $event[typename] ?>

31: </p>

32: Description:

33: <?php print $event[edescription] ?>

34: </body>

35: </html>

 475

As you can see, this screen is simple. We acquire an array from the events table

using the dblib.inc function getEvent(), passing it the variable $event_id that should

contain the ID value passed to us via a query string. After we have this array, it is

simply a matter of writing it to the browser.

You can see the getEvent() function in Listing 24.10. It consists of a relatively

simple SQL statement that joins the clubs and events tables.

Listing 24.10: An Extract from dlib.inc

 1: function getEvent($event_id)

 2: {

 3: global $link;

 4:

 5: $query = "SELECT clubs.name as clubname, events.*,

 6: areas.area as areaname, types.type as typename ";

 7: $query .= "FROM clubs, events, areas, types WHERE ";

 8: $query .= "clubs.id=events.eclub

 9: AND events.area=areas.id

10: AND events.type=types.id

11: AND events.id='$event_id'";

12: $result = mysql_query($query, $link);

13: if (! $result)

14: die ("getEvent fatal error: ".mysql_error());

15: return mysql_fetch_array($result);

16: }

 476

Figure 24.2: Output from viewclub.php.

The Future

We have now worked through the entire events diary script. I hope that it has given

you some feel for the dynamics of a small real-world project and a sense of what is

possible with PHP.

In particular, notice how easy PHP's session functions make it to save user

preferences from page to page. If our user returns to the viewevents.php screen at

any time within a single session, she will see the same choices that she made on her

previous visit to this screen. Without the session functions, we would probably have

to pass much more information from request to request using URL query strings.

Although the events diary is complete in some senses, it nonetheless represents a

prototype, enough to show to a client as work in progress. It would benefit from a

few more features, most notably a keyword search. It would also be nice to allow

visitors to comment on the events listed. This could add an entirely new dimension

to the script, making it a compulsive environment to visit.

We might want to allow club administrators to include links to images that can be

incorporated in club summaries. We could even allow administrators to upload

images via the browser.

Members might also be allowed to clone events and to make events recurring.

 477

Before the script can be delivered to a client, we will also have to build an

administration environment, with tools to allow a non-technical producer to edit and

remove both accounts and events as well as add and edit area and type categories.

Finally, you might have noticed that the script output is currently somewhat spartan.

We will need to hand our work on to a design and build team who will add branding,

slick navigation, and additional content. Luckily, most of our code will be easy to

work around, although we may be called on to amend the loops that output

summary information.

Summary

In this hour and the preceding hour, we completed a fully working multi-screen Web

application. We explored techniques for saving state, authenticating users,

manipulating and presenting information stored in a database, and much more.

A multi-screen code example is not easy to work through in a book, but it is worth

persevering. We have addressed issues that you will encounter time and time again

in your projects. Almost any script you write will have to handle more than one

request, so you will need to build strategies for maintaining state information.

Q&A

Q Well, that's it. What next?

A Now it's over to you. This book contains enough information for you to build your

own sophisticated scripts and environments. Armed with this and with the wealth of

information available online, there should be no stopping you!

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the

material covered. Try to understand the quiz answers before continuing to the next

hour's lesson. Quiz answers are provided in Appendix A.

Quiz

What function do you use to add an element to the end of an array?

 478

Is it possible to add an element to an array without using a function?

Which function do you use to translate special characters into HTML format?

Which function do you use to translate newline characters into
 tags?

You can use the SID constant to pass the session ID to another page via an HTML

link. How do you achieve the same effect with a form?

Activities

Review the code presented in this hour. Are there any techniques or issues that

might have relevance for your own projects?

Flip back through the book and through your notes if you have been making

them. If you have followed the book as a course, remember that you should

revisit your notes a few times to get the full benefit from the work you have

done.

